BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

772 related articles for article (PubMed ID: 25707803)

  • 1. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms.
    Gall M; Wurz N; Samland J; Chan CF; Köhl M
    Nature; 2021 Jan; 589(7840):40-43. PubMed ID: 33408376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin gradient thermometry for ultracold atoms in optical lattices.
    Weld DM; Medley P; Miyake H; Hucul D; Pritchard DE; Ketterle W
    Phys Rev Lett; 2009 Dec; 103(24):245301. PubMed ID: 20366208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Khatami E; Trivedi N; Paiva T; Rigol M; Zwierlein MW
    Science; 2016 Sep; 353(6305):1260-4. PubMed ID: 27634529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.
    Boll M; Hilker TA; Salomon G; Omran A; Nespolo J; Pollet L; Bloch I; Gross C
    Science; 2016 Sep; 353(6305):1257-60. PubMed ID: 27634528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.
    Bonnes L; Hazzard KR; Manmana SR; Rey AM; Wessel S
    Phys Rev Lett; 2012 Nov; 109(20):205305. PubMed ID: 23215502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of 2D Fermionic Mott Insulators of ^{40}K with Single-Site Resolution.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Zwierlein MW
    Phys Rev Lett; 2016 Jun; 116(23):235301. PubMed ID: 27341242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model.
    Kim AJ; Simkovic F; Kozik E
    Phys Rev Lett; 2020 Mar; 124(11):117602. PubMed ID: 32242729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressibility of a fermionic mott insulator of ultracold atoms.
    Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG
    Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of Hubbard model physics in WSe
    Tang Y; Li L; Li T; Xu Y; Liu S; Barmak K; Watanabe K; Taniguchi T; MacDonald AH; Shan J; Mak KF
    Nature; 2020 Mar; 579(7799):353-358. PubMed ID: 32188950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model.
    Parsons MF; Mazurenko A; Chiu CS; Ji G; Greif D; Greiner M
    Science; 2016 Sep; 353(6305):1253-6. PubMed ID: 27634527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity.
    Paiva T; Scalettar R; Randeria M; Trivedi N
    Phys Rev Lett; 2010 Feb; 104(6):066406. PubMed ID: 20366841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Certifying the Adiabatic Preparation of Ultracold Lattice Bosons in the Vicinity of the Mott Transition.
    Carcy C; Hercé G; Tenart A; Roscilde T; Clément D
    Phys Rev Lett; 2021 Jan; 126(4):045301. PubMed ID: 33576669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiferromagnetic Correlations in Two-Dimensional Fermionic Mott-Insulating and Metallic Phases.
    Drewes JH; Miller LA; Cocchi E; Chan CF; Wurz N; Gall M; Pertot D; Brennecke F; Köhl M
    Phys Rev Lett; 2017 Apr; 118(17):170401. PubMed ID: 28498688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum State Engineering of a Hubbard System with Ultracold Fermions.
    Chiu CS; Ji G; Mazurenko A; Greif D; Greiner M
    Phys Rev Lett; 2018 Jun; 120(24):243201. PubMed ID: 29956952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin-imbalance in a 2D Fermi-Hubbard system.
    Brown PT; Mitra D; Guardado-Sanchez E; Schauß P; Kondov SS; Khatami E; Paiva T; Trivedi N; Huse DA; Bakr WS
    Science; 2017 Sep; 357(6358):1385-1388. PubMed ID: 28963252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.