These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

776 related articles for article (PubMed ID: 25707803)

  • 1. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms.
    Gall M; Wurz N; Samland J; Chan CF; Köhl M
    Nature; 2021 Jan; 589(7840):40-43. PubMed ID: 33408376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiferromagnetic phase transition in a 3D fermionic Hubbard model.
    Shao HJ; Wang YX; Zhu DZ; Zhu YS; Sun HN; Chen SY; Zhang C; Fan ZJ; Deng Y; Yao XC; Chen YA; Pan JW
    Nature; 2024 Aug; 632(8024):267-272. PubMed ID: 38987606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin gradient thermometry for ultracold atoms in optical lattices.
    Weld DM; Medley P; Miyake H; Hucul D; Pritchard DE; Ketterle W
    Phys Rev Lett; 2009 Dec; 103(24):245301. PubMed ID: 20366208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Khatami E; Trivedi N; Paiva T; Rigol M; Zwierlein MW
    Science; 2016 Sep; 353(6305):1260-4. PubMed ID: 27634529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.
    Boll M; Hilker TA; Salomon G; Omran A; Nespolo J; Pollet L; Bloch I; Gross C
    Science; 2016 Sep; 353(6305):1257-60. PubMed ID: 27634528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.
    Bonnes L; Hazzard KR; Manmana SR; Rey AM; Wessel S
    Phys Rev Lett; 2012 Nov; 109(20):205305. PubMed ID: 23215502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of 2D Fermionic Mott Insulators of ^{40}K with Single-Site Resolution.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Zwierlein MW
    Phys Rev Lett; 2016 Jun; 116(23):235301. PubMed ID: 27341242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin and Charge Correlations across the Metal-to-Insulator Crossover in the Half-Filled 2D Hubbard Model.
    Kim AJ; Simkovic F; Kozik E
    Phys Rev Lett; 2020 Mar; 124(11):117602. PubMed ID: 32242729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressibility of a fermionic mott insulator of ultracold atoms.
    Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG
    Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of Hubbard model physics in WSe
    Tang Y; Li L; Li T; Xu Y; Liu S; Barmak K; Watanabe K; Taniguchi T; MacDonald AH; Shan J; Mak KF
    Nature; 2020 Mar; 579(7799):353-358. PubMed ID: 32188950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model.
    Parsons MF; Mazurenko A; Chiu CS; Ji G; Greif D; Greiner M
    Science; 2016 Sep; 353(6305):1253-6. PubMed ID: 27634527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity.
    Paiva T; Scalettar R; Randeria M; Trivedi N
    Phys Rev Lett; 2010 Feb; 104(6):066406. PubMed ID: 20366841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Certifying the Adiabatic Preparation of Ultracold Lattice Bosons in the Vicinity of the Mott Transition.
    Carcy C; Hercé G; Tenart A; Roscilde T; Clément D
    Phys Rev Lett; 2021 Jan; 126(4):045301. PubMed ID: 33576669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiferromagnetic Correlations in Two-Dimensional Fermionic Mott-Insulating and Metallic Phases.
    Drewes JH; Miller LA; Cocchi E; Chan CF; Wurz N; Gall M; Pertot D; Brennecke F; Köhl M
    Phys Rev Lett; 2017 Apr; 118(17):170401. PubMed ID: 28498688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum State Engineering of a Hubbard System with Ultracold Fermions.
    Chiu CS; Ji G; Mazurenko A; Greif D; Greiner M
    Phys Rev Lett; 2018 Jun; 120(24):243201. PubMed ID: 29956952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.