BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25707971)

  • 1. What are the biological and therapeutic implications of biomolecule corona formation on the surface of inhaled nanomedicines?
    Kumar A; Forbes B; Mudway I; Bicer EM; Dailey LA
    Nanomedicine (Lond); 2015 Feb; 10(3):343-5. PubMed ID: 25707971
    [No Abstract]   [Full Text] [Related]  

  • 2. Enrichment of immunoregulatory proteins in the biomolecular corona of nanoparticles within human respiratory tract lining fluid.
    Kumar A; Bicer EM; Morgan AB; Pfeffer PE; Monopoli M; Dawson KA; Eriksson J; Edwards K; Lynham S; Arno M; Behndig AF; Blomberg A; Somers G; Hassall D; Dailey LA; Forbes B; Mudway IS
    Nanomedicine; 2016 May; 12(4):1033-1043. PubMed ID: 26767511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of pulmonary surfactant on nanoparticulate drug delivery systems.
    Schleh C; Rothen-Rutishauser B; Kreyling WG
    Eur J Pharm Biopharm; 2011 Apr; 77(3):350-2. PubMed ID: 21195761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barrier or carrier? Pulmonary surfactant and drug delivery.
    Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):117-27. PubMed ID: 25709061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomedicines via the pulmonary route: a promising strategy to reach the target?
    Guérin M; Lepeltier E
    Drug Deliv Transl Res; 2024 Aug; 14(8):2276-2297. PubMed ID: 38587757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins.
    Guagliardo R; Pérez-Gil J; De Smedt S; Raemdonck K
    J Control Release; 2018 Dec; 291():116-126. PubMed ID: 30321577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibiotic-nanomedicines: facing the challenge of effective treatment of antibiotic-resistant respiratory tract infections.
    Ritsema JA; der Weide HV; Te Welscher YM; Goessens WH; van Nostrum CF; Storm G; Bakker-Woudenberg IA; Hays JP
    Future Microbiol; 2018 Nov; 13():1683-1692. PubMed ID: 30499686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.
    Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM
    ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant protein-D modulates interaction of Pneumocystis carinii with alveolar macrophages.
    Limper AH; Crouch EC; O'Riordan DM; Chang D; Vuk-Pavlovic Z; Standing JE; Kwon KY; Adlakha A
    J Lab Clin Med; 1995 Nov; 126(5):416-22. PubMed ID: 7595025
    [No Abstract]   [Full Text] [Related]  

  • 10. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhaled nitric oxide decreases hyperoxia-induced surfactant abnormality in preterm rabbits.
    Issa A; Lappalainen U; Kleinman M; Bry K; Hallman M
    Pediatr Res; 1999 Feb; 45(2):247-54. PubMed ID: 10022598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence that GM-CSF inhalation improves lung clearance in pulmonary alveolar proteinosis.
    Ohashi K; Sato A; Takada T; Arai T; Nei T; Kasahara Y; Motoi N; Hojo M; Urano S; Ishii H; Yokoba M; Eda R; Nakayama H; Nasuhara Y; Tsuchihashi Y; Kaneko C; Kanazawa H; Ebina M; Yamaguchi E; Kirchner J; Inoue Y; Nakata K; Tazawa R
    Respir Med; 2012 Feb; 106(2):284-93. PubMed ID: 22112784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges.
    Haque S; Whittaker MR; McIntosh MP; Pouton CW; Kaminskas LM
    Nanomedicine; 2016 Aug; 12(6):1703-24. PubMed ID: 27033834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles.
    Garcia-Mouton C; Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2019 Nov; 144():230-243. PubMed ID: 31560956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles in the lung and their protein corona: the few proteins that count.
    Whitwell H; Mackay RM; Elgy C; Morgan C; Griffiths M; Clark H; Skipp P; Madsen J
    Nanotoxicology; 2016 Nov; 10(9):1385-94. PubMed ID: 27465202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses.
    Moghimi SM; Simberg D; Skotland T; Yaghmur A; Hunter AC
    J Pharmacol Exp Ther; 2019 Sep; 370(3):581-592. PubMed ID: 30940695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery.
    Heyder J
    Proc Am Thorac Soc; 2004; 1(4):315-20. PubMed ID: 16113452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary surfactant and nanocarriers: Toxicity versus combined nanomedical applications.
    Hidalgo A; Cruz A; Pérez-Gil J
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt B):1740-1748. PubMed ID: 28450046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lyophilization and nebulization of pulmonary surfactant-coated nanogels for siRNA inhalation therapy.
    Merckx P; Lammens J; Nuytten G; Bogaert B; Guagliardo R; Maes T; Vervaet C; De Beer T; De Smedt SC; Raemdonck K
    Eur J Pharm Biopharm; 2020 Dec; 157():191-199. PubMed ID: 33022391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant apoprotein-A in airway secretions in pulmonary oedema.
    Masuda T; Shimura S; Takishima T
    Lancet; 1991 Nov; 338(8779):1396-7. PubMed ID: 1682758
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.