BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25707971)

  • 21. Complement monitoring of nanomedicines and implants.
    Moghimi SM; Hunter AC
    Adv Drug Deliv Rev; 2011 Sep; 63(12):963-4. PubMed ID: 21745510
    [No Abstract]   [Full Text] [Related]  

  • 22. Evaluating Nanomedicines: Obstacles and Advancements.
    Swierczewska M; Crist RM; McNeil SE
    Methods Mol Biol; 2018; 1682():3-16. PubMed ID: 29039088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico optimization of targeted aerosol delivery in upper airways via Inhaled Volume Tracking.
    Heller-Algazi M; Nof E; Das P; Bhardwaj S; Kassinos SC; Sznitman J
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105138. PubMed ID: 32798812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineered aerosol medicine and drug delivery methods for optimal respiratory therapy.
    Ali M
    Respir Care; 2014 Oct; 59(10):1608-10. PubMed ID: 25261561
    [No Abstract]   [Full Text] [Related]  

  • 25. Lung surfactant phospholipids in the foetus, newborn, and in the adult; evidence of abnormality in respiratory failure.
    Hallman M
    Ann Chir Gynaecol Suppl; 1982; 196():19-23. PubMed ID: 6961877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine.
    Cai R; Chen C
    Adv Mater; 2019 Nov; 31(45):e1805740. PubMed ID: 30589115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity.
    Wohlleben W; Driessen MD; Raesch S; Schaefer UF; Schulze C; Vacano Bv; Vennemann A; Wiemann M; Ruge CA; Platsch H; Mues S; Ossig R; Tomm JM; Schnekenburger J; Kuhlbusch TA; Luch A; Lehr CM; Haase A
    Nanotoxicology; 2016 Sep; 10(7):970-80. PubMed ID: 26984182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhalation of titanium dioxide (P25) nanoparticles to rats and changes in surfactant protein (SP-D) levels in bronchoalveolar lavage fluid and serum.
    Okada T; Lee BW; Ogami A; Oyabu T; Myojo T
    Nanotoxicology; 2019 Dec; 13(10):1396-1408. PubMed ID: 31512956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Therapeutic efficacy of nanomedicines for prostate cancer: An update.
    Lakshmanan VK
    Investig Clin Urol; 2016 Jan; 57(1):21-9. PubMed ID: 26966723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Challenges and Successes Using Nanomedicines for Aerosol Delivery to the Airways.
    Resnier P; Mottais A; Sibiril Y; Le Gall T; Montier T
    Curr Gene Ther; 2016; 16(1):34-46. PubMed ID: 26725879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of lung surfactant liquid crystalline nanostructures on respiratory drug delivery.
    Das SC; Stewart PJ
    Int J Pharm; 2016 Dec; 514(2):465-474. PubMed ID: 27321111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomedicines for kidney diseases.
    Williams RM; Jaimes EA; Heller DA
    Kidney Int; 2016 Oct; 90(4):740-5. PubMed ID: 27292222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fate of exogenous surfactant in neonates with respiratory distress syndrome.
    Hallman M; Merritt TA; Bry K
    Clin Pharmacokinet; 1994 Mar; 26(3):215-32. PubMed ID: 8194284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging.
    Kompella UB; Amrite AC; Pacha Ravi R; Durazo SA
    Prog Retin Eye Res; 2013 Sep; 36():172-98. PubMed ID: 23603534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lost in translation: what is stopping inhaled nanomedicines from realizing their potential?
    Kumar A; Dailey LA; Forbes B
    Ther Deliv; 2014 Jul; 5(7):757-61. PubMed ID: 25287383
    [No Abstract]   [Full Text] [Related]  

  • 36. Towards crystal engineering via simulated pulmonary surfactant monolayers to optimise inhaled drug delivery.
    Davies MJ; Seton L; Tiernan N; Murphy MF; Gibbons P
    Int J Pharm; 2011 Dec; 421(1):1-11. PubMed ID: 21982739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Participation of pulmonary macrophages in regulating the quantity of surfactant on the alveolar surface].
    Filippenko LN
    Biull Eksp Biol Med; 1977 Dec; 84(12):646-50. PubMed ID: 579605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Proposed In Vitro Method to Assess Effects of Inhaled Particles on Lung Surfactant Function.
    Sørli JB; Da Silva E; Bäckman P; Levin M; Thomsen BL; Koponen IK; Larsen ST
    Am J Respir Cell Mol Biol; 2016 Mar; 54(3):306-11. PubMed ID: 26524226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Impact of Lipid Corona on Rifampicin Intramacrophagic Transport Using Inhaled Solid Lipid Nanoparticles Surface-Decorated with a Mannosylated Surfactant.
    Maretti E; Rustichelli C; Lassinantti Gualtieri M; Costantino L; Siligardi C; Miselli P; Buttini F; Montecchi M; Leo E; Truzzi E; Iannuccelli V
    Pharmaceutics; 2019 Oct; 11(10):. PubMed ID: 31581554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From bench to bedside: in vitro and in vivo evaluation of a neonate-focused nebulized surfactant delivery strategy.
    Bianco F; Ricci F; Catozzi C; Murgia X; Schlun M; Bucholski A; Hetzer U; Bonelli S; Lombardini M; Pasini E; Nutini M; Pertile M; Minocchieri S; Simonato M; Rosa B; Pieraccini G; Moneti G; Lorenzini L; Catinella S; Villetti G; Civelli M; Pioselli B; Cogo P; Carnielli V; Dani C; Salomone F
    Respir Res; 2019 Jul; 20(1):134. PubMed ID: 31266508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.