BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25708318)

  • 41. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood.
    Bornemann LC; Kookana RS; Welp G
    Chemosphere; 2007 Mar; 67(5):1033-42. PubMed ID: 17157349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.
    Choi H; Al-Abed SR
    J Hazard Mater; 2009 Jun; 165(1-3):860-6. PubMed ID: 19059706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of partitioning between complex organic mixtures and water: application of polyparameter linear free energy relationships.
    Endo S; Schmidt TC
    Environ Sci Technol; 2006 Jan; 40(2):536-45. PubMed ID: 16468400
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon.
    Li MS; Wang R; Fu Kuo DT; Shih YH
    Environ Sci Process Impacts; 2017 Mar; 19(3):276-287. PubMed ID: 28165513
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments.
    Schreiter IJ; Schmidt W; Schüth C
    Chemosphere; 2018 Jul; 203():34-43. PubMed ID: 29605747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitrogen doped char from anaerobically digested fiber for phosphate removal in aqueous solutions.
    Mood SH; Ayiania M; Jefferson-Milan Y; Garcia-Perez M
    Chemosphere; 2020 Feb; 240():124889. PubMed ID: 31563102
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.
    Han Z; Sani B; Mrozik W; Obst M; Beckingham B; Karapanagioti HK; Werner D
    Water Res; 2015 Mar; 70():394-403. PubMed ID: 25555224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil.
    Brändli RC; Hartnik T; Henriksen T; Cornelissen G
    Chemosphere; 2008 Dec; 73(11):1805-10. PubMed ID: 18842282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative evaluation of bone chars derived from bovine parts: Physicochemical properties and copper sorption behavior.
    Wang M; Liu Y; Yao Y; Han L; Liu X
    Sci Total Environ; 2020 Jan; 700():134470. PubMed ID: 31693958
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents.
    Kwon S; Pignatello JJ
    Environ Sci Technol; 2005 Oct; 39(20):7932-9. PubMed ID: 16295858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of the rigidity of geosorbent organic matter on non-ideal sorption behaviors of chlorinated benzenes.
    Ju D; Young TM
    Water Res; 2005 Jul; 39(12):2599-610. PubMed ID: 15967474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting the Sorption of Aromatic Acids to Noncarbonized and Carbonized Sorbents.
    Sigmund G; Sun H; Hofmann T; Kah M
    Environ Sci Technol; 2016 Apr; 50(7):3641-8. PubMed ID: 26949216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Competitive sorption of pyrene on wood chars.
    Wang X; Sato T; Xing B
    Environ Sci Technol; 2006 May; 40(10):3267-72. PubMed ID: 16749692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of methods to obtain geosorbent fractions enriched in carbonaceous materials that affect hydrophobic organic chemical sorption.
    Jeong S; Werth CJ
    Environ Sci Technol; 2005 May; 39(9):3279-88. PubMed ID: 15926579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns.
    Georgi A; Schierz A; Mackenzie K; Kopinke FD
    J Contam Hydrol; 2015 Aug; 179():76-88. PubMed ID: 26070009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.
    Wang B; Zhang W; Li H; Fu H; Qu X; Zhu D
    Environ Pollut; 2017 Jan; 220(Pt B):1349-1358. PubMed ID: 27838059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant.
    Li J; Li Y; Wu Y; Zheng M
    J Hazard Mater; 2014 Sep; 280():450-7. PubMed ID: 25194813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluating dissolved organic carbon-water partitioning using polyparameter linear free energy relationships: Implications for the fate of disinfection by-products.
    Neale PA; Escher BI; Goss KU; Endo S
    Water Res; 2012 Jul; 46(11):3637-45. PubMed ID: 22542133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accumulated Gibbs free energy as a quantitative measure of desorption hysteresis associated with the formation of metastable states.
    Borisover M
    Chemosphere; 2019 Jan; 215():490-499. PubMed ID: 30340157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via π-PAHB: Sorption experiments and DFT calculations.
    Zhang K; Chen B; Mao J; Zhu L; Xing B
    Environ Pollut; 2018 Sep; 240():342-352. PubMed ID: 29751330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.