These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25708447)

  • 21. Acute interactions between intestinal sugar and calcium transport in vitro.
    Tharabenjasin P; Douard V; Patel C; Krishnamra N; Johnson RJ; Zuo J; Ferraris RP
    Am J Physiol Gastrointest Liver Physiol; 2014 Jan; 306(1):G1-12. PubMed ID: 24177030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of high transport and phosphorylation capacity for both glucose and fructose in the ruby-throated hummingbird (Archilochus colubris).
    Myrka AM; Welch KC
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():253-261. PubMed ID: 29127075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined Application of Glutamate Transporter Inhibitors and Hypothermia Discriminates Principal Constituent Processes Involved in Glutamate Homo- and Heteroexchange in Brain Nerve Terminals.
    Pastukhov A; Borisova T
    Ther Hypothermia Temp Manag; 2018 Sep; 8(3):143-149. PubMed ID: 29420129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of γ-Aminobutyric acid transporter 1 inhibition by tiagabine on brain glutamate and γ-Aminobutyric acid metabolism in the anesthetized rat In vivo.
    Patel AB; de Graaf RA; Rothman DL; Behar KL
    J Neurosci Res; 2015 Jul; 93(7):1101-8. PubMed ID: 25663257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glyceraldehyde metabolism in mouse brain and the entry of blood-borne glyceraldehyde into the brain.
    Hassel B; Sørnes K; Elsais A; Cordero PR; Frøland AS; Rise F
    J Neurochem; 2024 Jun; ():. PubMed ID: 38922704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymes of fructose metabolism in human kidney.
    Heinz F; Schlegel F; Krause PH
    Enzyme; 1975; 19(2):85-92. PubMed ID: 165931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of GLUT5 domains responsible for fructose transport.
    Buchs AE; Sasson S; Joost HG; Cerasi E
    Endocrinology; 1998 Mar; 139(3):827-31. PubMed ID: 9492009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol.
    Bais R; James HM; Rofe AM; Conyers RA
    Biochem J; 1985 Aug; 230(1):53-60. PubMed ID: 2996495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Progress on Fructose Metabolism-Chrebp, Fructolysis, and Polyol Pathway.
    Iizuka K
    Nutrients; 2023 Apr; 15(7):. PubMed ID: 37049617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport.
    Ebert K; Ewers M; Bisha I; Sander S; Rasputniac T; Daniel H; Antes I; Witt H
    J Biol Chem; 2018 Feb; 293(6):2115-2124. PubMed ID: 29259131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histochemical studies on the distribution of some enzymes concerned with carbohydrate metabolism in the locus ceruleus, nucleus tractus mesencephalicus n. trigemini, nucleus dorsalis n. vagi and nucleus n. hypoglossi of the rat.
    Iijima K; Imai K
    Acta Histochem; 1975; 52(1):145-63. PubMed ID: 809976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.
    Droppelmann CA; Sáez DE; Asenjo JL; Yáñez AJ; García-Rocha M; Concha II; Grez M; Guinovart JJ; Slebe JC
    Biochem J; 2015 Dec; 472(2):225-37. PubMed ID: 26417114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Gradient of Glutamate Across the Membrane: Glutamate/Aspartate-Induced Changes in the Ambient Level of L-[
    Borisova T; Borysov A; Pastukhov A; Krisanova N
    Cell Mol Neurobiol; 2016 Nov; 36(8):1229-1240. PubMed ID: 26886753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. (13)C MR spectroscopy study of lactate as substrate for rat brain.
    Qu H; Håberg A; Haraldseth O; Unsgård G; Sonnewald U
    Dev Neurosci; 2000; 22(5-6):429-36. PubMed ID: 11111159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zinc inhibition of hepatic fructose metabolism in rats.
    Coyle P; Tichelman E; Pauw R; Philcox J; Rofe A
    Biol Trace Elem Res; 2003 Apr; 92(1):41-54. PubMed ID: 12721403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes.
    Hajduch E; Darakhshan F; Hundal HS
    Diabetologia; 1998 Jul; 41(7):821-8. PubMed ID: 9686924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The regulation of glycolysis in perfused locust flight muscle.
    Ford WC; Candy DJ
    Biochem J; 1972 Dec; 130(4):1101-12. PubMed ID: 4266373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of glycolytic isozymes in rat thymocytes during cell cycle progression.
    Netzker R; Hermfisse U; Wein KH; Brand K
    Biochim Biophys Acta; 1994 Dec; 1224(3):371-6. PubMed ID: 7803492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary regulation of fructose metabolism in the intestine and in the liver of the rat. Duration of the effects of a high fructose diet after the return to the standard diet.
    Korieh A; Crouzoulon G
    Arch Int Physiol Biochim Biophys; 1991 Dec; 99(6):455-60. PubMed ID: 1725750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of fructose and glyceraldehyde in the isolated perfused pig liver.
    Sestoft L; Damgaard S; Tygstrup N; Lundquist F
    Acta Med Scand Suppl; 1972; 542():119-29. PubMed ID: 4146847
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.