These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25708570)

  • 1. Superamphiphobic polymeric surfaces sustaining ultrahigh impact pressures of aqueous high- and low-surface-tension mixtures, tested with laser-induced forward transfer of drops.
    Ellinas K; Chatzipetrou M; Zergioti I; Tserepi A; Gogolides E
    Adv Mater; 2015 Apr; 27(13):2231-5. PubMed ID: 25708570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers.
    Ellinas K; Pujari SP; Dragatogiannis DA; Charitidis CA; Tserepi A; Zuilhof H; Gogolides E
    ACS Appl Mater Interfaces; 2014 May; 6(9):6510-24. PubMed ID: 24749933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing.
    Ellinas K; Tserepi A; Gogolides E
    Langmuir; 2011 Apr; 27(7):3960-9. PubMed ID: 21351799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid drops impacting superamphiphobic coatings.
    Deng X; Schellenberger F; Papadopoulos P; Vollmer D; Butt HJ
    Langmuir; 2013 Jun; 29(25):7847-56. PubMed ID: 23697383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of flexible microlens array through vapor-induced room temperature dewetting on plasma treated Parylene-C.
    Xiaopeng Bi ; Wen Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2085-8. PubMed ID: 25570395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces.
    Yang J; Rose FR; Gadegaard N; Alexander MR
    Langmuir; 2009 Mar; 25(5):2567-71. PubMed ID: 19437741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of liquid surface tension on gas capillaries and capillary forces at superamphiphobic surfaces.
    Eriksson M; Claesson PM; Järn M; Wallqvist V; Tuominen M; Kappl M; Teisala H; Vollmer D; Schoelkopf J; Gane PAC; Mäkelä JM; Swerin A
    Sci Rep; 2023 Apr; 13(1):6794. PubMed ID: 37100810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-Inhibition Lithography for the Fabrication of Multipolymeric Structures.
    Vitale A; Quaglio M; Chiodoni A; Bejtka K; Cocuzza M; Pirri CF; Bongiovanni R
    Adv Mater; 2015 Aug; 27(31):4560-5. PubMed ID: 26173099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving superamphiphobicity by mimicking tree-branch topography.
    Ding W; Dorao CA; Fernandino M
    J Colloid Interface Sci; 2022 Apr; 611():118-128. PubMed ID: 34933190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Multi-Functional Superamphiphobic FOTS-TiO
    Chen L; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27188-27198. PubMed ID: 27652905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.
    McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA
    Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces.
    Accardo A; Gentile F; Mecarini F; De Angelis F; Burghammer M; Di Fabrizio E; Riekel C
    Langmuir; 2010 Sep; 26(18):15057-64. PubMed ID: 20804171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Mesoporous Supraparticles on Superamphiphobic Surfaces.
    Wooh S; Huesmann H; Tahir MN; Paven M; Wichmann K; Vollmer D; Tremel W; Papadopoulos P; Butt HJ
    Adv Mater; 2015 Dec; 27(45):7338-43. PubMed ID: 26461096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles.
    Extrand CW; Moon SI
    Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning.
    Wong WSY; Corrales TP; Naga A; Baumli P; Kaltbeitzel A; Kappl M; Papadopoulos P; Vollmer D; Butt HJ
    ACS Nano; 2020 Apr; 14(4):3836-3846. PubMed ID: 32096971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2012 Feb; 368(1):584-91. PubMed ID: 22062688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile fabrication of a superamphiphobic surface on the copper substrate.
    Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q
    J Colloid Interface Sci; 2012 Feb; 367(1):443-9. PubMed ID: 22074690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements.
    Giusti F; Popot JL; Tribet C
    Langmuir; 2012 Jul; 28(28):10372-80. PubMed ID: 22712750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves.
    Tang X; Dong J; Li X
    J Colloid Interface Sci; 2008 Sep; 325(1):223-7. PubMed ID: 18571664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental research on laser interference micro/nano fabrication of hydrophobic modification of stent surface.
    Wang J; Gao L; Li Y; Liu B
    Lasers Med Sci; 2017 Jan; 32(1):221-227. PubMed ID: 27826674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.