These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Fabrication of flexible microlens array through vapor-induced room temperature dewetting on plasma treated Parylene-C. Xiaopeng Bi ; Wen Li Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2085-8. PubMed ID: 25570395 [TBL] [Abstract][Full Text] [Related]
6. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces. Yang J; Rose FR; Gadegaard N; Alexander MR Langmuir; 2009 Mar; 25(5):2567-71. PubMed ID: 19437741 [TBL] [Abstract][Full Text] [Related]
7. Effects of liquid surface tension on gas capillaries and capillary forces at superamphiphobic surfaces. Eriksson M; Claesson PM; Järn M; Wallqvist V; Tuominen M; Kappl M; Teisala H; Vollmer D; Schoelkopf J; Gane PAC; Mäkelä JM; Swerin A Sci Rep; 2023 Apr; 13(1):6794. PubMed ID: 37100810 [TBL] [Abstract][Full Text] [Related]
8. Oxygen-Inhibition Lithography for the Fabrication of Multipolymeric Structures. Vitale A; Quaglio M; Chiodoni A; Bejtka K; Cocuzza M; Pirri CF; Bongiovanni R Adv Mater; 2015 Aug; 27(31):4560-5. PubMed ID: 26173099 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic Multi-Functional Superamphiphobic FOTS-TiO Chen L; Guo Z; Liu W ACS Appl Mater Interfaces; 2016 Oct; 8(40):27188-27198. PubMed ID: 27652905 [TBL] [Abstract][Full Text] [Related]
11. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces. McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139 [TBL] [Abstract][Full Text] [Related]
12. In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces. Accardo A; Gentile F; Mecarini F; De Angelis F; Burghammer M; Di Fabrizio E; Riekel C Langmuir; 2010 Sep; 26(18):15057-64. PubMed ID: 20804171 [TBL] [Abstract][Full Text] [Related]
14. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles. Extrand CW; Moon SI Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189 [TBL] [Abstract][Full Text] [Related]
15. Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning. Wong WSY; Corrales TP; Naga A; Baumli P; Kaltbeitzel A; Kappl M; Papadopoulos P; Vollmer D; Butt HJ ACS Nano; 2020 Apr; 14(4):3836-3846. PubMed ID: 32096971 [TBL] [Abstract][Full Text] [Related]
16. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles. Ebert D; Bhushan B J Colloid Interface Sci; 2012 Feb; 368(1):584-91. PubMed ID: 22062688 [TBL] [Abstract][Full Text] [Related]
17. Facile fabrication of a superamphiphobic surface on the copper substrate. Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q J Colloid Interface Sci; 2012 Feb; 367(1):443-9. PubMed ID: 22074690 [TBL] [Abstract][Full Text] [Related]
18. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Giusti F; Popot JL; Tribet C Langmuir; 2012 Jul; 28(28):10372-80. PubMed ID: 22712750 [TBL] [Abstract][Full Text] [Related]
19. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves. Tang X; Dong J; Li X J Colloid Interface Sci; 2008 Sep; 325(1):223-7. PubMed ID: 18571664 [TBL] [Abstract][Full Text] [Related]
20. Experimental research on laser interference micro/nano fabrication of hydrophobic modification of stent surface. Wang J; Gao L; Li Y; Liu B Lasers Med Sci; 2017 Jan; 32(1):221-227. PubMed ID: 27826674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]