These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25708804)

  • 41. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae.
    Rehmeyer C; Li W; Kusaba M; Kim YS; Brown D; Staben C; Dean R; Farman M
    Nucleic Acids Res; 2006; 34(17):4685-701. PubMed ID: 16963777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide high-resolution mapping of DNA methylation reveals epigenetic variation in the offspring of sexual and asexual propagation in Robinia pseudoacacia.
    Zhang Z; Liu J; Sun Y; Wang S; Xing X; Feng X; Pérez-Pérez JM; Li Y
    Plant Cell Rep; 2021 Dec; 40(12):2435-2447. PubMed ID: 34524479
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea.
    Kulkarni RD; Thon MR; Pan H; Dean RA
    Genome Biol; 2005; 6(3):R24. PubMed ID: 15774025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Putative RhoGAP proteins orchestrate vegetative growth, conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.
    Ye W; Chen X; Zhong Z; Chen M; Shi L; Zheng H; Lin Y; Zhang D; Lu G; Li G; Chen J; Wang Z
    Fungal Genet Biol; 2014 Jun; 67():37-50. PubMed ID: 24731806
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel L-arabinose-responsive regulator discovered in the rice-blast fungus Pyricularia oryzae (Magnaporthe oryzae).
    Klaubauf S; Zhou M; Lebrun MH; de Vries RP; Battaglia E
    FEBS Lett; 2016 Feb; 590(4):550-8. PubMed ID: 26790567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Xlr1 is involved in the transcriptional control of the pentose catabolic pathway, but not hemi-cellulolytic enzymes in Magnaporthe oryzae.
    Battaglia E; Klaubauf S; Vallet J; Ribot C; Lebrun MH; de Vries RP
    Fungal Genet Biol; 2013 Aug; 57():76-84. PubMed ID: 23810898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A "mille-feuille" of silencing: epigenetic control of transposable elements.
    Rigal M; Mathieu O
    Biochim Biophys Acta; 2011 Aug; 1809(8):452-8. PubMed ID: 21514406
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epigenetic inheritance and reprogramming in plants and fission yeast.
    Martienssen RA; Kloc A; Slotkin RK; Tanurdzić M
    Cold Spring Harb Symp Quant Biol; 2008; 73():265-71. PubMed ID: 19329575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae.
    Nunes CC; Gowda M; Sailsbery J; Xue M; Chen F; Brown DE; Oh Y; Mitchell TK; Dean RA
    BMC Genomics; 2011 Jun; 12():288. PubMed ID: 21635781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA methylation and epigenetic inheritance in plants and filamentous fungi.
    Martienssen RA; Colot V
    Science; 2001 Aug; 293(5532):1070-4. PubMed ID: 11498574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean.
    Kim KD; El Baidouri M; Abernathy B; Iwata-Otsubo A; Chavarro C; Gonzales M; Libault M; Grimwood J; Jackson SA
    Plant Physiol; 2015 Aug; 168(4):1433-47. PubMed ID: 26149573
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii.
    Li W; Wang Y; Zhu J; Wang Z; Tang G; Huang B
    Fungal Biol; 2017 Mar; 121(3):293-303. PubMed ID: 28215355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic DNA Methylation in Plant Growth and Development.
    Bartels A; Han Q; Nair P; Stacey L; Gaynier H; Mosley M; Huang QQ; Pearson JK; Hsieh TF; An YC; Xiao W
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30041459
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae.
    Chadha S; Sharma M
    PLoS One; 2014; 9(4):e94415. PubMed ID: 24709911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-wide characterization of methylguanosine-capped and polyadenylated small RNAs in the rice blast fungus Magnaporthe oryzae.
    Gowda M; Nunes CC; Sailsbery J; Xue M; Chen F; Nelson CA; Brown DE; Oh Y; Meng S; Mitchell T; Hagedorn CH; Dean RA
    Nucleic Acids Res; 2010 Nov; 38(21):7558-69. PubMed ID: 20660015
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    Huh A; Dubey A; Kim S; Jeon J; Lee YH
    Plant Pathol J; 2017 Apr; 33(2):193-205. PubMed ID: 28381966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Pattern and Function of DNA Methylation in Fungal Plant Pathogens.
    He C; Zhang Z; Li B; Tian S
    Microorganisms; 2020 Feb; 8(2):. PubMed ID: 32046339
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epigenetic Control of Gene Expression in Maize.
    Huang J; Lynn JS; Schulte L; Vendramin S; McGinnis K
    Int Rev Cell Mol Biol; 2017; 328():25-48. PubMed ID: 28069135
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-Wide Analysis Reveals Dynamic Epigenomic Differences in Soybean Response to Low-Phosphorus Stress.
    Chu S; Zhang X; Yu K; Lv L; Sun C; Liu X; Zhang J; Jiao Y; Zhang D
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant Transgenerational Epigenetics.
    Quadrana L; Colot V
    Annu Rev Genet; 2016 Nov; 50():467-491. PubMed ID: 27732791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.