These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25708871)

  • 1. Swimming droplets driven by a surface wave.
    Ebata H; Sano M
    Sci Rep; 2015 Feb; 5():8546. PubMed ID: 25708871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets.
    Banno T; Asami A; Ueno N; Kitahata H; Koyano Y; Asakura K; Toyota T
    Sci Rep; 2016 Aug; 6():31292. PubMed ID: 27503336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical model of chirality-induced helical self-propulsion.
    Yamamoto T; Sano M
    Phys Rev E; 2018 Jan; 97(1-1):012607. PubMed ID: 29448380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of a deformable active particle under shear flow.
    Tarama M; Menzel AM; ten Hagen B; Wittkowski R; Ohta T; Löwen H
    J Chem Phys; 2013 Sep; 139(10):104906. PubMed ID: 24050364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of Self-Propelled Objects: From the Viewpoint of Nonlinear Science.
    Suematsu NJ; Nakata S
    Chemistry; 2018 Apr; 24(24):6308-6324. PubMed ID: 29288537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic Janus Liquid Droplets Assembled and Propelled by Electric Field.
    Sindoro M; Granick S
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16773-16776. PubMed ID: 30378736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann study of chemically-driven self-propelled droplets.
    Fadda F; Gonnella G; Lamura A; Tiribocchi A
    Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of self-propelled soft pendulums.
    Nakata S; Kayahara K; Kuze M; Ginder E; Nagayama M; Nishimori H
    Soft Matter; 2018 May; 14(19):3791-3798. PubMed ID: 29717750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling crawling cell movement on soft engineered substrates.
    Löber J; Ziebert F; Aranson IS
    Soft Matter; 2014 Mar; 10(9):1365-73. PubMed ID: 24651116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic imbalance induced self-propulsion of liquid metals.
    Zavabeti A; Daeneke T; Chrimes AF; O'Mullane AP; Zhen Ou J; Mitchell A; Khoshmanesh K; Kalantar-Zadeh K
    Nat Commun; 2016 Aug; 7():12402. PubMed ID: 27488954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective vibrations of a hydrodynamic active lattice.
    Thomson SJ; Durey M; Rosales RR
    Proc Math Phys Eng Sci; 2020 Jul; 476(2239):20200155. PubMed ID: 32831612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions.
    Suga M; Suda S; Ichikawa M; Kimura Y
    Phys Rev E; 2018 Jun; 97(6-1):062703. PubMed ID: 30011466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating the dynamics of self-propelled gallium droplets by gold nanoparticles and nanoscale surface morphology.
    Zakharov AA; Mårsell E; Hilner E; Timm R; Andersen JN; Lundgren E; Mikkelsen A
    ACS Nano; 2015 May; 9(5):5422-31. PubMed ID: 25880600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hysteretic dynamics of active particles in a periodic orienting field.
    Romensky M; Scholz D; Lobaskin V
    J R Soc Interface; 2015 Jul; 12(108):20150015. PubMed ID: 26040594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Motion and Rotation of Acid Droplets on the Surface of a Liquid Metal.
    Wang Z; Wang X; Miao Q; Gao F; Zhao YP
    Langmuir; 2021 Apr; 37(14):4370-4379. PubMed ID: 33792321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2021 Aug; 12(31):7526-7530. PubMed ID: 34346682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curling Liquid Crystal Microswimmers: A Cascade of Spontaneous Symmetry Breaking.
    Krüger C; Klös G; Bahr C; Maass CC
    Phys Rev Lett; 2016 Jul; 117(4):048003. PubMed ID: 27494501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Boltzmann and Jones matrix calculations for the determination of the director field structure in self-propelling nematic droplets.
    Bahr C
    Phys Rev E; 2021 Oct; 104(4-1):044703. PubMed ID: 34781516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-propelled droplet-based electricity generation.
    Liu C; Sun J; Zhuang Y; Wei J; Li J; Dong L; Yan D; Hu A; Zhou X; Wang Z
    Nanoscale; 2018 Dec; 10(48):23164-23169. PubMed ID: 30515499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.