These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 25708891)
1. Toward Understanding the Size Dependence of Shape Features for Predicting Spiculation in Lung Nodules for Computer-Aided Diagnosis. Niehaus R; Raicu DS; Furst J; Armato S J Digit Imaging; 2015 Dec; 28(6):704-17. PubMed ID: 25708891 [TBL] [Abstract][Full Text] [Related]
2. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386 [TBL] [Abstract][Full Text] [Related]
3. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Messay T; Hardie RC; Rogers SK Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434 [TBL] [Abstract][Full Text] [Related]
5. Automatic Scoring of Multiple Semantic Attributes With Multi-Task Feature Leverage: A Study on Pulmonary Nodules in CT Images. Sihong Chen ; Jing Qin ; Xing Ji ; Baiying Lei ; Tianfu Wang ; Dong Ni ; Jie-Zhi Cheng IEEE Trans Med Imaging; 2017 Mar; 36(3):802-814. PubMed ID: 28113928 [TBL] [Abstract][Full Text] [Related]
6. Measuring Interobserver Disagreement in Rating Diagnostic Characteristics of Pulmonary Nodule Using the Lung Imaging Database Consortium and Image Database Resource Initiative. Lin H; Huang C; Wang W; Luo J; Yang X; Liu Y Acad Radiol; 2017 Apr; 24(4):401-410. PubMed ID: 28169141 [TBL] [Abstract][Full Text] [Related]
7. Integrating PET and CT information to improve diagnostic accuracy for lung nodules: A semiautomatic computer-aided method. Nie Y; Li Q; Li F; Pu Y; Appelbaum D; Doi K J Nucl Med; 2006 Jul; 47(7):1075-80. PubMed ID: 16818939 [TBL] [Abstract][Full Text] [Related]
8. A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. Kaya A; Can AB J Biomed Inform; 2015 Aug; 56():69-79. PubMed ID: 26008877 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Jacobs C; van Rikxoort EM; Murphy K; Prokop M; Schaefer-Prokop CM; van Ginneken B Eur Radiol; 2016 Jul; 26(7):2139-47. PubMed ID: 26443601 [TBL] [Abstract][Full Text] [Related]
10. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Madero Orozco H; Vergara Villegas OO; Cruz Sánchez VG; Ochoa DomÃnguez Hde J; Nandayapa Alfaro Mde J Biomed Eng Online; 2015 Feb; 14():9. PubMed ID: 25888834 [TBL] [Abstract][Full Text] [Related]
11. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography. Chen H; Wang XH; Ma DQ; Ma BR Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569 [TBL] [Abstract][Full Text] [Related]
12. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system. Jacobs C; van Rikxoort EM; Scholten ET; de Jong PA; Prokop M; Schaefer-Prokop C; van Ginneken B Invest Radiol; 2015 Mar; 50(3):168-73. PubMed ID: 25478740 [TBL] [Abstract][Full Text] [Related]
13. A Segmentation Framework of Pulmonary Nodules in Lung CT Images. Mukhopadhyay S J Digit Imaging; 2016 Feb; 29(1):86-103. PubMed ID: 26055544 [TBL] [Abstract][Full Text] [Related]
14. Computer-aided diagnosis of lung nodules on CT scans: ROC study of its effect on radiologists' performance. Way T; Chan HP; Hadjiiski L; Sahiner B; Chughtai A; Song TK; Poopat C; Stojanovska J; Frank L; Attili A; Bogot N; Cascade PN; Kazerooni EA Acad Radiol; 2010 Mar; 17(3):323-32. PubMed ID: 20152726 [TBL] [Abstract][Full Text] [Related]
15. Cloud-Based NoSQL Open Database of Pulmonary Nodules for Computer-Aided Lung Cancer Diagnosis and Reproducible Research. Ferreira Junior JR; Oliveira MC; de Azevedo-Marques PM J Digit Imaging; 2016 Dec; 29(6):716-729. PubMed ID: 27440183 [TBL] [Abstract][Full Text] [Related]
16. Potential lung nodules identification for characterization by variable multistep threshold and shape indices from CT images. Iqbal S; Iqbal K; Arif F; Shaukat A; Khanum A Comput Math Methods Med; 2014; 2014():241647. PubMed ID: 25506388 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy. Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867 [TBL] [Abstract][Full Text] [Related]
18. Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Wang W; Luo J; Yang X; Lin H Acad Radiol; 2015 Apr; 22(4):488-95. PubMed ID: 25601306 [TBL] [Abstract][Full Text] [Related]
19. Radiologists' performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. Li F; Aoyama M; Shiraishi J; Abe H; Li Q; Suzuki K; Engelmann R; Sone S; Macmahon H; Doi K AJR Am J Roentgenol; 2004 Nov; 183(5):1209-15. PubMed ID: 15505279 [TBL] [Abstract][Full Text] [Related]
20. Shape-based computer-aided detection of lung nodules in thoracic CT images. Ye X; Lin X; Dehmeshki J; Slabaugh G; Beddoe G IEEE Trans Biomed Eng; 2009 Jul; 56(7):1810-20. PubMed ID: 19527950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]