These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 25708922)

  • 1. Silicon-chip mid-infrared frequency comb generation.
    Griffith AG; Lau RK; Cardenas J; Okawachi Y; Mohanty A; Fain R; Lee YH; Yu M; Phare CT; Poitras CB; Gaeta AL; Lipson M
    Nat Commun; 2015 Feb; 6():6299. PubMed ID: 25708922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid-infrared ultra-broadband optical Kerr frequency comb based on a CdTe ring microresonator: a theoretical investigation.
    Lu S; Liu X; Shi Y; Yang H; Long Z; Li Y; Wu H; Liang H
    Opt Express; 2022 Sep; 30(19):33969-33979. PubMed ID: 36242420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-infrared frequency comb based on a quantum cascade laser.
    Hugi A; Villares G; Blaser S; Liu HC; Faist J
    Nature; 2012 Dec; 492(7428):229-33. PubMed ID: 23235876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators.
    Wang CY; Herr T; Del'Haye P; Schliesser A; Hofer J; Holzwarth R; Hänsch TW; Picqué N; Kippenberg TJ
    Nat Commun; 2013; 4():1345. PubMed ID: 23299895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Battery-operated integrated frequency comb generator.
    Stern B; Ji X; Okawachi Y; Gaeta AL; Lipson M
    Nature; 2018 Oct; 562(7727):401-405. PubMed ID: 30297798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-infrared frequency combs and staggered spectral patterns in χ
    Amiune N; Fan Z; Pankratov VV; Puzyrev DN; Skryabin DV; Zawilski KT; Schunemann PG; Breunig I
    Opt Express; 2023 Jan; 31(2):907-915. PubMed ID: 36785139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic mid-infrared spectroscopy via microresonator-based dual-comb source.
    Yu M; Okawachi Y; Griffith AG; Lipson M; Gaeta AL
    Opt Lett; 2019 Sep; 44(17):4259-4262. PubMed ID: 31465377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide.
    Kuyken B; Ideguchi T; Holzner S; Yan M; Hänsch TW; Van Campenhout J; Verheyen P; Coen S; Leo F; Baets R; Roelkens G; Picqué N
    Nat Commun; 2015 Feb; 6():6310. PubMed ID: 25697764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical frequency comb spectroscopy.
    Foltynowicz A; Masłowski P; Ban T; Adler F; Cossel KC; Briles TC; Ye J
    Faraday Discuss; 2011; 150():23-31; discussion 113-60. PubMed ID: 22457942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities.
    Miller S; Luke K; Okawachi Y; Cardenas J; Gaeta AL; Lipson M
    Opt Express; 2014 Nov; 22(22):26517-25. PubMed ID: 25401803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip dual-comb source for spectroscopy.
    Dutt A; Joshi C; Ji X; Cardenas J; Okawachi Y; Luke K; Gaeta AL; Lipson M
    Sci Adv; 2018 Mar; 4(3):e1701858. PubMed ID: 29511733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects.
    Griffith AG; Yu M; Okawachi Y; Cardenas J; Mohanty A; Gaeta AL; Lipson M
    Opt Express; 2016 Jun; 24(12):13044-50. PubMed ID: 27410323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon-chip-based mid-infrared dual-comb spectroscopy.
    Yu M; Okawachi Y; Griffith AG; Picqué N; Lipson M; Gaeta AL
    Nat Commun; 2018 May; 9(1):1869. PubMed ID: 29760418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs.
    Wang PH; Ferdous F; Miao H; Wang J; Leaird DE; Srinivasan K; Chen L; Aksyuk V; Weiner AM
    Opt Express; 2012 Dec; 20(28):29284-95. PubMed ID: 23388754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy.
    Cruz FC; Maser DL; Johnson T; Ycas G; Klose A; Giorgetta FR; Coddington I; Diddams SA
    Opt Express; 2015 Oct; 23(20):26814-24. PubMed ID: 26480192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband mid-infrared frequency comb generation in a Si(3)N(4) microresonator.
    Luke K; Okawachi Y; Lamont MR; Gaeta AL; Lipson M
    Opt Lett; 2015 Nov; 40(21):4823-6. PubMed ID: 26512459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR.
    He J; Li Y
    Opt Express; 2020 Oct; 28(21):30771-30783. PubMed ID: 33115071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation.
    Chiles J; Nader N; Hickstein DD; Yu SP; Briles TC; Carlson D; Jung H; Shainline JM; Diddams S; Papp SB; Nam SW; Mirin RP
    Opt Lett; 2018 Apr; 43(7):1527-1530. PubMed ID: 29601021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband parametric frequency comb generation with a 1-μm pump source.
    Saha K; Okawachi Y; Levy JS; Lau RK; Luke K; Foster MA; Lipson M; Gaeta AL
    Opt Express; 2012 Nov; 20(24):26935-41. PubMed ID: 23187548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.