These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25709033)

  • 1. Protocol for fragment hopping.
    Teuscher KB; Ji H
    Methods Mol Biol; 2015; 1289():57-73. PubMed ID: 25709033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational fragment-based de novo design protocol guided by ligand efficiency indices (LEI).
    Cortés-Cabrera Á; Gago F; Morreale A
    Methods Mol Biol; 2015; 1289():89-100. PubMed ID: 25709035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding site druggability assessment in fragment-based drug design.
    Zhou Y; Huang N
    Methods Mol Biol; 2015; 1289():13-21. PubMed ID: 25709029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein binding site analysis for drug discovery using a computational fragment-based method.
    Ludington JL
    Methods Mol Biol; 2015; 1289():145-54. PubMed ID: 25709039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational methods for fragment-based ligand design: growing and linking.
    Bienstock RJ
    Methods Mol Biol; 2015; 1289():119-35. PubMed ID: 25709037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and implementation of an ribonucleic acid (RNA) directed fragment library.
    Bodoor K; Boyapati V; Gopu V; Boisdore M; Allam K; Miller J; Treleaven WD; Weldeghiorghis T; Aboul-ela F
    J Med Chem; 2009 Jun; 52(12):3753-61. PubMed ID: 19445516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors.
    Ji H; Stanton BZ; Igarashi J; Li H; Martásek P; Roman LJ; Poulos TL; Silverman RB
    J Am Chem Soc; 2008 Mar; 130(12):3900-14. PubMed ID: 18321097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating "fragment-based virtual library" using pocket similarity search of ligand-receptor complexes.
    Khashan RS
    Methods Mol Biol; 2015; 1289():23-9. PubMed ID: 25709030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel strategy for three-dimensional fragment-based lead discovery.
    Yuan H; Lu T; Ran T; Liu H; Lu S; Tai W; Leng Y; Zhang W; Wang J; Chen Y
    J Chem Inf Model; 2011 Apr; 51(4):959-74. PubMed ID: 21438547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment hopping protocol for the design of small-molecule protein-protein interaction inhibitors.
    Kell SR; Wang Z; Ji H
    Bioorg Med Chem; 2022 Sep; 69():116879. PubMed ID: 35749838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment-based ligand discovery.
    Fischer M; Hubbard RE
    Mol Interv; 2009 Feb; 9(1):22-30. PubMed ID: 19299661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scoring functions for fragment-based drug discovery.
    Wang JC; Lin JH
    Methods Mol Biol; 2015; 1289():101-15. PubMed ID: 25709036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How well can fragments explore accessed chemical space? A case study from heat shock protein 90.
    Roughley SD; Hubbard RE
    J Med Chem; 2011 Jun; 54(12):3989-4005. PubMed ID: 21561141
    [No Abstract]   [Full Text] [Related]  

  • 15. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.
    Faller CE; Raman EP; MacKerell AD; Guvench O
    Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring small molecules for an allosteric site on procaspase-6.
    Murray J; Giannetti AM; Steffek M; Gibbons P; Hearn BR; Cohen F; Tam C; Pozniak C; Bravo B; Lewcock J; Jaishankar P; Ly CQ; Zhao X; Tang Y; Chugha P; Arkin MR; Flygare J; Renslo AR
    ChemMedChem; 2014 Jan; 9(1):73-7, 2. PubMed ID: 24259468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand specificity, privileged substructures and protein druggability from fragment-based screening.
    Barelier S; Krimm I
    Curr Opin Chem Biol; 2011 Aug; 15(4):469-74. PubMed ID: 21411360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of fragment-like estrogen receptor tetrahydroisoquinoline ligands from a scaffold-detection approach.
    Möcklinghoff S; van Otterlo WA; Rose R; Fuchs S; Zimmermann TJ; Dominguez Seoane M; Waldmann H; Ottmann C; Brunsveld L
    J Med Chem; 2011 Apr; 54(7):2005-11. PubMed ID: 21381753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using novel descriptor accounting for ligand-receptor interactions to define and visually explore biologically relevant chemical space.
    Rabal O; Oyarzabal J
    J Chem Inf Model; 2012 May; 52(5):1086-102. PubMed ID: 22486368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment library design: using cheminformatics and expert chemists to fill gaps in existing fragment libraries.
    Kutchukian PS; So SS; Fischer C; Waller CL
    Methods Mol Biol; 2015; 1289():43-53. PubMed ID: 25709032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.