BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25709040)

  • 21. Identification of novel inhibitors of tropomyosin-related kinase A through the structure-based virtual screening with homology-modeled protein structure.
    Park H; Chi O; Kim J; Hong S
    J Chem Inf Model; 2011 Nov; 51(11):2986-93. PubMed ID: 22017333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of selective and orally bioavailable protein kinase Cθ (PKCθ) inhibitors from a fragment hit.
    George DM; Breinlinger EC; Friedman M; Zhang Y; Wang J; Argiriadi M; Bansal-Pakala P; Barth M; Duignan DB; Honore P; Lang Q; Mittelstadt S; Potin D; Rundell L; Edmunds JJ
    J Med Chem; 2015 Jan; 58(1):222-36. PubMed ID: 25000588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hot spot-based design of small-molecule inhibitors for protein-protein interactions.
    Guo W; Wisniewski JA; Ji H
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2546-54. PubMed ID: 24751445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fragment-Based Ligand Designing.
    Katiyar SP; Malik V; Kumari A; Singh K; Sundar D
    Methods Mol Biol; 2018; 1762():123-144. PubMed ID: 29594771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystallographic fragment screening.
    Badger J
    Methods Mol Biol; 2012; 841():161-77. PubMed ID: 22222452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-guided fragment screening for lead discovery.
    Verdonk ML; Hartshorn MJ
    Curr Opin Drug Discov Devel; 2004 Jul; 7(4):404-10. PubMed ID: 15338949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia.
    Keserű GM; Erlanson DA; Ferenczy GG; Hann MM; Murray CW; Pickett SD
    J Med Chem; 2016 Sep; 59(18):8189-206. PubMed ID: 27124799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK).
    Huard K; Ahn K; Amor P; Beebe DA; Borzilleri KA; Chrunyk BA; Coffey SB; Cong Y; Conn EL; Culp JS; Dowling MS; Gorgoglione MF; Gutierrez JA; Knafels JD; Lachapelle EA; Pandit J; Parris KD; Perez S; Pfefferkorn JA; Price DA; Raymer B; Ross TT; Shavnya A; Smith AC; Subashi TA; Tesz GJ; Thuma BA; Tu M; Weaver JD; Weng Y; Withka JM; Xing G; Magee TV
    J Med Chem; 2017 Sep; 60(18):7835-7849. PubMed ID: 28853885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ins and outs of selective kinase inhibitor development.
    Müller S; Chaikuad A; Gray NS; Knapp S
    Nat Chem Biol; 2015 Nov; 11(11):818-21. PubMed ID: 26485069
    [No Abstract]   [Full Text] [Related]  

  • 30. The rise of fragment-based drug discovery.
    Murray CW; Rees DC
    Nat Chem; 2009 Jun; 1(3):187-92. PubMed ID: 21378847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.
    Badrinarayan P; Sastry GN
    J Mol Graph Model; 2012 Apr; 34():89-100. PubMed ID: 22306417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fragment based drug design: from experimental to computational approaches.
    Kumar A; Voet A; Zhang KY
    Curr Med Chem; 2012; 19(30):5128-47. PubMed ID: 22934764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic tailoring and transplanting: a practical method that makes virtual screening more useful.
    Li Y; Zhao Y; Liu Z; Wang R
    J Chem Inf Model; 2011 Jun; 51(6):1474-91. PubMed ID: 21520918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.
    Urich R; Wishart G; Kiczun M; Richters A; Tidten-Luksch N; Rauh D; Sherborne B; Wyatt PG; Brenk R
    ACS Chem Biol; 2013 May; 8(5):1044-52. PubMed ID: 23534475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biophysical methods for identifying fragment-based inhibitors of protein-protein interactions.
    Pfaff SJ; Chimenti MS; Kelly MJ; Arkin MR
    Methods Mol Biol; 2015; 1278():587-613. PubMed ID: 25859978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lessons learned from molecular scaffold analysis.
    Hu Y; Stumpfe D; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1742-53. PubMed ID: 21755989
    [No Abstract]   [Full Text] [Related]  

  • 37. Discovery of highly potent, selective, and efficacious small molecule inhibitors of ERK1/2.
    Ren L; Grina J; Moreno D; Blake JF; Gaudino JJ; Garrey R; Metcalf AT; Burkard M; Martinson M; Rasor K; Chen H; Dean B; Gould SE; Pacheco P; Shahidi-Latham S; Yin J; West K; Wang W; Moffat JG; Schwarz JB
    J Med Chem; 2015 Feb; 58(4):1976-91. PubMed ID: 25603482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining biophysical screening and X-ray crystallography for fragment-based drug discovery.
    Hennig M; Ruf A; Huber W
    Top Curr Chem; 2012; 317():115-43. PubMed ID: 21837555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex.
    Hao GF; Wang F; Li H; Zhu XL; Yang WC; Huang LS; Wu JW; Berry EA; Yang GF
    J Am Chem Soc; 2012 Jul; 134(27):11168-76. PubMed ID: 22690928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.