These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25709441)

  • 21. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering.
    Jin G; He R; Sha B; Li W; Qing H; Teng R; Xu F
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():995-1005. PubMed ID: 30184829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composite 3D printed scaffold with structured electrospun nanofibers promotes chondrocyte adhesion and infiltration.
    Rampichová M; Košt'áková Kuželová E; Filová E; Chvojka J; Šafka J; Pelcl M; Daňková J; Prosecká E; Buzgo M; Plencner M; Lukáš D; Amler E
    Cell Adh Migr; 2018 May; 12(3):271-285. PubMed ID: 29130836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Progress on cell infiltration in electrospun scaffold].
    An B; Sun M; Sun M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Feb; 27(2):219-22. PubMed ID: 23596692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering.
    Park YR; Ju HW; Lee JM; Kim DK; Lee OJ; Moon BM; Park HJ; Jeong JY; Yeon YK; Park CH
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1567-1574. PubMed ID: 27431792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controllable fiber orientation and nonlinear elasticity of electrospun nanofibrous small diameter tubular scaffolds for vascular tissue engineering.
    Niu Z; Wang X; Meng X; Guo X; Jiang Y; Xu Y; Li Q; Shen C
    Biomed Mater; 2019 Mar; 14(3):035006. PubMed ID: 30776786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional scaffold of electrosprayed fibers with large pore size for tissue regeneration.
    Hong JK; Madihally SV
    Acta Biomater; 2010 Dec; 6(12):4734-42. PubMed ID: 20620245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning.
    Wu J; Huang C; Liu W; Yin A; Chen W; He C; Wang H; Liu S; Fan C; Bowlin GL; Mo X
    J Biomed Nanotechnol; 2014 Apr; 10(4):603-14. PubMed ID: 24734512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel class of collector in electrospinning device for the fabrication of 3D nanofibrous structure for large defect load-bearing tissue engineering application.
    Hejazi F; Mirzadeh H; Contessi N; Tanzi MC; Faré S
    J Biomed Mater Res A; 2017 May; 105(5):1535-1548. PubMed ID: 27363526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds.
    Li L; Qian Y; Jiang C; Lv Y; Liu W; Zhong L; Cai K; Li S; Yang L
    Biomaterials; 2012 Apr; 33(12):3428-45. PubMed ID: 22300743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids.
    Zhang K; Song L; Wang J; Yan S; Li G; Cui L; Yin J
    Acta Biomater; 2017 Mar; 51():246-257. PubMed ID: 28093366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds.
    Stone H; Lin S; Mequanint K
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():324-332. PubMed ID: 30813034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.
    Entekhabi E; Haghbin Nazarpak M; Moztarzadeh F; Sadeghi A
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():380-7. PubMed ID: 27612726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VEGF release from a polymeric nanofiber scaffold for improved angiogenesis.
    Zigdon-Giladi H; Khutaba A; Elimelech R; Machtei EE; Srouji S
    J Biomed Mater Res A; 2017 Oct; 105(10):2712-2721. PubMed ID: 28556610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue engineered plant extracts as nanofibrous wound dressing.
    Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S
    Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography.
    Stachewicz U; Szewczyk PK; Kruk A; Barber AH; Czyrska-Filemonowicz A
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():397-408. PubMed ID: 30573264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.
    Sudwilai T; Ng JJ; Boonkrai C; Israsena N; Chuangchote S; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(12):1240-52. PubMed ID: 24933469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.