BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25709941)

  • 1. Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier.
    Amin MM; Kermani S; Talebi A; Oghli MG
    J Med Signals Sens; 2015; 5(1):49-58. PubMed ID: 25709941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine.
    Kazemi F; Najafabadi TA; Araabi BN
    J Med Signals Sens; 2016; 6(3):183-93. PubMed ID: 27563575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier.
    Mirmohammadi P; Ameri M; Shalbaf A
    Phys Eng Sci Med; 2021 Jun; 44(2):433-441. PubMed ID: 33751420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer aided detection and classification of acute lymphoblastic leukemia cell subtypes based on microscopic image analysis.
    MoradiAmin M; Memari A; Samadzadehaghdam N; Kermani S; Talebi A
    Microsc Res Tech; 2016 Oct; 79(10):908-916. PubMed ID: 27406956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust classification of acute lymphocytic leukemia-based microscopic images with supervised Hilbert-Huang transform.
    Elrefaie RM; Mohamed MA; Marzouk EA; Ata MM
    Microsc Res Tech; 2024 Feb; 87(2):191-204. PubMed ID: 37715495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2019 Aug; 57(8):1783-1811. PubMed ID: 31201595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Framework of Computer Aided Diagnosis Systems for Cancer Classification Based on Medical Images.
    El Houby EMF
    J Med Syst; 2018 Jul; 42(8):157. PubMed ID: 29995204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks.
    Shafique S; Tehsin S
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818802789. PubMed ID: 30261827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Automatic and Robust Decision Support System for Accurate Acute Leukemia Diagnosis from Blood Microscopic Images.
    Moshavash Z; Danyali H; Helfroush MS
    J Digit Imaging; 2018 Oct; 31(5):702-717. PubMed ID: 29654425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception.
    Bodzas A; Kodytek P; Zidek J
    Front Bioeng Biotechnol; 2020; 8():1005. PubMed ID: 32984283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutual Information based hybrid model and deep learning for Acute Lymphocytic Leukemia detection in single cell blood smear images.
    Jha KK; Dutta HS
    Comput Methods Programs Biomed; 2019 Oct; 179():104987. PubMed ID: 31443862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic classification of acute lymphoblastic leukemia cells and lymphocyte subtypes based on a novel convolutional neural network.
    MoradiAmin M; Yousefpour M; Samadzadehaghdam N; Ghahari L; Ghorbani M; Mafi M
    Microsc Res Tech; 2024 Mar; ():. PubMed ID: 38445461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm.
    Ghane N; Vard A; Talebi A; Nematollahy P
    J Med Signals Sens; 2017; 7(2):92-101. PubMed ID: 28553582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images.
    Chin Neoh S; Srisukkham W; Zhang L; Todryk S; Greystoke B; Peng Lim C; Alamgir Hossain M; Aslam N
    Sci Rep; 2015 Oct; 5():14938. PubMed ID: 26450665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for recognition of control chart patterns: Type-2 fuzzy clustering optimized support vector machine.
    Khormali A; Addeh J
    ISA Trans; 2016 Jul; 63():256-264. PubMed ID: 27101724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of acute lymphoblastic leukemia using deep learning.
    Rehman A; Abbas N; Saba T; Rahman SIU; Mehmood Z; Kolivand H
    Microsc Res Tech; 2018 Nov; 81(11):1310-1317. PubMed ID: 30351463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing.
    Sarrafzadeh O; Dehnavi AM
    Adv Biomed Res; 2015; 4():174. PubMed ID: 26605213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images.
    Sampathila N; Chadaga K; Goswami N; Chadaga RP; Pandya M; Prabhu S; Bairy MG; Katta SS; Bhat D; Upadya SP
    Healthcare (Basel); 2022 Sep; 10(10):. PubMed ID: 36292259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia.
    Su J; Liu S; Song J
    Comput Methods Programs Biomed; 2017 Dec; 152():115-123. PubMed ID: 29054251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.