These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 25709941)
1. Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier. Amin MM; Kermani S; Talebi A; Oghli MG J Med Signals Sens; 2015; 5(1):49-58. PubMed ID: 25709941 [TBL] [Abstract][Full Text] [Related]
2. Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine. Kazemi F; Najafabadi TA; Araabi BN J Med Signals Sens; 2016; 6(3):183-93. PubMed ID: 27563575 [TBL] [Abstract][Full Text] [Related]
3. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Mirmohammadi P; Ameri M; Shalbaf A Phys Eng Sci Med; 2021 Jun; 44(2):433-441. PubMed ID: 33751420 [TBL] [Abstract][Full Text] [Related]
4. Computer aided detection and classification of acute lymphoblastic leukemia cell subtypes based on microscopic image analysis. MoradiAmin M; Memari A; Samadzadehaghdam N; Kermani S; Talebi A Microsc Res Tech; 2016 Oct; 79(10):908-916. PubMed ID: 27406956 [TBL] [Abstract][Full Text] [Related]
5. A robust classification of acute lymphocytic leukemia-based microscopic images with supervised Hilbert-Huang transform. Elrefaie RM; Mohamed MA; Marzouk EA; Ata MM Microsc Res Tech; 2024 Feb; 87(2):191-204. PubMed ID: 37715495 [TBL] [Abstract][Full Text] [Related]
6. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Acharya V; Kumar P Med Biol Eng Comput; 2019 Aug; 57(8):1783-1811. PubMed ID: 31201595 [TBL] [Abstract][Full Text] [Related]
7. Framework of Computer Aided Diagnosis Systems for Cancer Classification Based on Medical Images. El Houby EMF J Med Syst; 2018 Jul; 42(8):157. PubMed ID: 29995204 [TBL] [Abstract][Full Text] [Related]
8. Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks. Shafique S; Tehsin S Technol Cancer Res Treat; 2018 Jan; 17():1533033818802789. PubMed ID: 30261827 [TBL] [Abstract][Full Text] [Related]
9. An Automatic and Robust Decision Support System for Accurate Acute Leukemia Diagnosis from Blood Microscopic Images. Moshavash Z; Danyali H; Helfroush MS J Digit Imaging; 2018 Oct; 31(5):702-717. PubMed ID: 29654425 [TBL] [Abstract][Full Text] [Related]
10. Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception. Bodzas A; Kodytek P; Zidek J Front Bioeng Biotechnol; 2020; 8():1005. PubMed ID: 32984283 [TBL] [Abstract][Full Text] [Related]
11. Mutual Information based hybrid model and deep learning for Acute Lymphocytic Leukemia detection in single cell blood smear images. Jha KK; Dutta HS Comput Methods Programs Biomed; 2019 Oct; 179():104987. PubMed ID: 31443862 [TBL] [Abstract][Full Text] [Related]
12. Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm. Ghane N; Vard A; Talebi A; Nematollahy P J Med Signals Sens; 2017; 7(2):92-101. PubMed ID: 28553582 [TBL] [Abstract][Full Text] [Related]
13. An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images. Chin Neoh S; Srisukkham W; Zhang L; Todryk S; Greystoke B; Peng Lim C; Alamgir Hossain M; Aslam N Sci Rep; 2015 Oct; 5():14938. PubMed ID: 26450665 [TBL] [Abstract][Full Text] [Related]
14. A novel approach for recognition of control chart patterns: Type-2 fuzzy clustering optimized support vector machine. Khormali A; Addeh J ISA Trans; 2016 Jul; 63():256-264. PubMed ID: 27101724 [TBL] [Abstract][Full Text] [Related]
15. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Chatterjee S; Dey D; Munshi S Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550 [TBL] [Abstract][Full Text] [Related]
16. Classification of acute lymphoblastic leukemia using deep learning. Rehman A; Abbas N; Saba T; Rahman SIU; Mehmood Z; Kolivand H Microsc Res Tech; 2018 Nov; 81(11):1310-1317. PubMed ID: 30351463 [TBL] [Abstract][Full Text] [Related]
17. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing. Sarrafzadeh O; Dehnavi AM Adv Biomed Res; 2015; 4():174. PubMed ID: 26605213 [TBL] [Abstract][Full Text] [Related]
18. Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images. Sampathila N; Chadaga K; Goswami N; Chadaga RP; Pandya M; Prabhu S; Bairy MG; Katta SS; Bhat D; Upadya SP Healthcare (Basel); 2022 Sep; 10(10):. PubMed ID: 36292259 [TBL] [Abstract][Full Text] [Related]
19. A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Su J; Liu S; Song J Comput Methods Programs Biomed; 2017 Dec; 152():115-123. PubMed ID: 29054251 [TBL] [Abstract][Full Text] [Related]
20. Explainable CAD System for Classification of Acute Lymphoblastic Leukemia Based on a Robust White Blood Cell Segmentation. Diaz Resendiz JL; Ponomaryov V; Reyes Reyes R; Sadovnychiy S Cancers (Basel); 2023 Jun; 15(13):. PubMed ID: 37444486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]