These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25710307)

  • 1. Application of nanoimprinting technique for fabrication of trifocal diffractive lens with sine-like radial profile.
    Osipov V; Doskolovich LL; Bezus EA; Drew T; Zhou K; Sawalha K; Swadener G; Wolffsohn JS
    J Biomed Opt; 2015 Feb; 20(2):25008. PubMed ID: 25710307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and qualification of a diffractive trifocal optical profile for intraocular lenses.
    Gatinel D; Pagnoulle C; Houbrechts Y; Gobin L
    J Cataract Refract Surg; 2011 Nov; 37(11):2060-7. PubMed ID: 22018368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro optical quality measurements of three intraocular lens models having identical platform.
    Son HS; Tandogan T; Liebing S; Merz P; Choi CY; Khoramnia R; Auffarth GU
    BMC Ophthalmol; 2017 Jun; 17(1):108. PubMed ID: 28662629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical performance of two new trifocal intraocular lenses: through-focus modulation transfer function and influence of pupil size.
    Ruiz-Alcocer J; Madrid-Costa D; García-Lázaro S; Ferrer-Blasco T; Montés-Micó R
    Clin Exp Ophthalmol; 2014 Apr; 42(3):271-6. PubMed ID: 23927051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A broadband zone plate lens from transformation optics.
    Yang R; Tang W; Hao Y
    Opt Express; 2011 Jun; 19(13):12348-55. PubMed ID: 21716472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses.
    Gatinel D; Loicq J
    J Refract Surg; 2016 Apr; 32(4):273-80. PubMed ID: 27070236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Decentration on the Optical Quality of Two Intraocular Lenses.
    Ortiz C; Esteve-Taboada JJ; Belda-Salmerón L; Monsálvez-Romín D; Domínguez-Vicent A
    Optom Vis Sci; 2016 Dec; 93(12):1552-1559. PubMed ID: 27776082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory Evaluation of the Influence of Decentration and Pupil Size on the Optical Performance of a Monofocal, Bifocal, and Trifocal Intraocular Lens.
    Tandogan T; Son HS; Choi CY; Knorz MC; Auffarth GU; Khoramnia R
    J Refract Surg; 2017 Dec; 33(12):808-812. PubMed ID: 29227508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual axial PSF of diffractive trifocal lenses.
    Valle P; Oti J; Canales V; Cagigal M
    Opt Express; 2005 Apr; 13(7):2782-92. PubMed ID: 19495172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro optical quality comparison of 2 trifocal intraocular lenses and 1 progressive multifocal intraocular lens.
    Domínguez-Vicent A; Esteve-Taboada JJ; Del Águila-Carrasco AJ; Monsálvez-Romin D; Montés-Micó R
    J Cataract Refract Surg; 2016 Jan; 42(1):138-47. PubMed ID: 26948789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses.
    Vinas M; Gonzalez-Ramos A; Dorronsoro C; Akondi V; Garzon N; Poyales F; Marcos S
    J Refract Surg; 2017 Nov; 33(11):736-742. PubMed ID: 29117412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realization of binary radial diffractive optical elements by two-photon polymerization technique.
    Osipov V; Pavelyev V; Kachalov D; Zukauskas A; Chichkov B
    Opt Express; 2010 Dec; 18(25):25808-14. PubMed ID: 21164925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative performance of bifocal and multifocal intraocular lenses in a model eye: point spread function in multifocal intraocular lenses.
    Pieh S; Marvan P; Lackner B; Hanselmayer G; Schmidinger G; Leitgeb R; Sticker M; Hitzenberger CK; Fercher AF; Skorpik C
    Arch Ophthalmol; 2002 Jan; 120(1):23-8. PubMed ID: 11786053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro optical quality differences between multifocal apodized diffractive intraocular lenses.
    Montés-Micó R; Madrid-Costa D; Ruiz-Alcocer J; Ferrer-Blasco T; Pons AM
    J Cataract Refract Surg; 2013 Jun; 39(6):928-36. PubMed ID: 23688880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.
    Milton H; Brimicombe P; Morgan P; Gleeson H; Clamp J
    Opt Express; 2012 May; 20(10):11159-65. PubMed ID: 22565739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light distribution in diffractive multifocal optics and its optimization.
    Portney V
    J Cataract Refract Surg; 2011 Nov; 37(11):2053-9. PubMed ID: 22018367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the effect of laser beam width on quantitative evaluation of optical properties of intraocular lens implants.
    Walker BN; James RH; Chakravarty A; Calogero D; Ilev IK
    J Biomed Opt; 2014 May; 19(5):055004. PubMed ID: 24817618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical design and performance of a trifocal sinusoidal diffractive intraocular lens.
    Vega F; Valentino M; Rigato F; Millán MS
    Biomed Opt Express; 2021 Jun; 12(6):3338-3351. PubMed ID: 34221664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye.
    Choi J; Schwiegerling J
    J Refract Surg; 2008 Mar; 24(3):218-22. PubMed ID: 18416255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses.
    Villegas EA; Manzanera S; Lago CM; Hervella L; Sawides L; Artal P
    J Refract Surg; 2019 Feb; 35(2):126-131. PubMed ID: 30742228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.