BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25710363)

  • 1. phoU inactivation in Pseudomonas aeruginosa enhances accumulation of ppGpp and polyphosphate.
    de Almeida LG; Ortiz JH; Schneider RP; Spira B
    Appl Environ Microbiol; 2015 May; 81(9):3006-15. PubMed ID: 25710363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of polyphosphate genes in Pseudomonas aeruginosa.
    Munévar NF; de Almeida LG; Spira B
    Mol Genet Genomics; 2017 Feb; 292(1):105-116. PubMed ID: 27744562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable polyphosphate accumulation by a pseudo-revertant of an Escherichia coli phoU mutant.
    Hirota R; Motomura K; Nakai S; Handa T; Ikeda T; Kuroda A
    Biotechnol Lett; 2013 May; 35(5):695-701. PubMed ID: 23288295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhoU2 but Not PhoU1 as an Important Regulator of Biofilm Formation and Tolerance to Multiple Stresses by Participating in Various Fundamental Metabolic Processes in Staphylococcus epidermidis.
    Wang X; Han H; Lv Z; Lin Z; Shang Y; Xu T; Wu Y; Zhang Y; Qu D
    J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28947672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response.
    Rao NN; Liu S; Kornberg A
    J Bacteriol; 1998 Apr; 180(8):2186-93. PubMed ID: 9555903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803.
    Morohoshi T; Maruo T; Shirai Y; Kato J; Ikeda T; Takiguchi N; Ohtake H; Kuroda A
    Appl Environ Microbiol; 2002 Aug; 68(8):4107-10. PubMed ID: 12147514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of the pho regulon and polyphosphate synthesis against spermine stress in Pseudomonas aeruginosa.
    Peng YC; Lu C; Li G; Eichenbaum Z; Lu CD
    Mol Microbiol; 2017 Jun; 104(6):1037-1051. PubMed ID: 28370665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli.
    Kuroda A; Murphy H; Cashel M; Kornberg A
    J Biol Chem; 1997 Aug; 272(34):21240-3. PubMed ID: 9261133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of PhoU from Pseudomonas aeruginosa, a negative regulator of the Pho regulon.
    Lee SJ; Park YS; Kim SJ; Lee BJ; Suh SW
    J Struct Biol; 2014 Oct; 188(1):22-9. PubMed ID: 25220976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors.
    Kim HY; Schlictman D; Shankar S; Xie Z; Chakrabarty AM; Kornberg A
    Mol Microbiol; 1998 Feb; 27(4):717-25. PubMed ID: 9515698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of two chemotactic transducers for inorganic phosphate in Pseudomonas aeruginosa.
    Wu H; Kato J; Kuroda A; Ikeda T; Takiguchi N; Ohtake H
    J Bacteriol; 2000 Jun; 182(12):3400-4. PubMed ID: 10852870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in
    Racki LR; Tocheva EI; Dieterle MG; Sullivan MC; Jensen GJ; Newman DK
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):E2440-E2449. PubMed ID: 28265086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa.
    Rosenau F; Isenhardt S; Gdynia A; Tielker D; Schmidt E; Tielen P; Schobert M; Jahn D; Wilhelm S; Jaeger KE
    FEMS Microbiol Lett; 2010 Aug; 309(1):25-34. PubMed ID: 20546309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus.
    Boutte CC; Henry JT; Crosson S
    J Bacteriol; 2012 Jan; 194(1):28-35. PubMed ID: 22020649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction.
    Battesti A; Bouveret E
    J Bacteriol; 2009 Jan; 191(2):616-24. PubMed ID: 18996989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpoT-triggered stringent response controls usp gene expression in Pseudomonas aeruginosa.
    Boes N; Schreiber K; Schobert M
    J Bacteriol; 2008 Nov; 190(21):7189-99. PubMed ID: 18776018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of spoT, relA and dksA genes on quinolone tolerance in Pseudomonas aeruginosa under nongrowing condition.
    Viducic D; Ono T; Murakami K; Susilowati H; Kayama S; Hirota K; Miyake Y
    Microbiol Immunol; 2006; 50(4):349-57. PubMed ID: 16625057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ellagic acid derivatives from Terminalia chebula Retz. increase the susceptibility of Pseudomonas aeruginosa to stress by inhibiting polyphosphate kinase.
    Sarabhai S; Harjai K; Sharma P; Capalash N
    J Appl Microbiol; 2015 Apr; 118(4):817-25. PubMed ID: 25640983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of polyphosphate metabolism to environmental and biotechnological problems.
    Keasling JD; Van Dien SJ; Trelstad P; Renninger N; McMahon K
    Biochemistry (Mosc); 2000 Mar; 65(3):324-31. PubMed ID: 10739475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism.
    Renninger N; Knopp R; Nitsche H; Clark DS; Keasling JD
    Appl Environ Microbiol; 2004 Dec; 70(12):7404-12. PubMed ID: 15574942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.