BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25710605)

  • 1. Integration of non-fuel coproducts into the GREET model.
    Forman GS; Unnasch S
    Environ Sci Technol; 2015 Apr; 49(7):4372-80. PubMed ID: 25710605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greenhouse Gas Emission Evaluation of the GTL Pathway.
    Forman GS; Hahn TE; Jensen SD
    Environ Sci Technol; 2011 Oct; 45(20):9084-92. PubMed ID: 21936580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. U.S. refinery efficiency: impacts analysis and implications for fuel carbon policy implementation.
    Forman GS; Divita VB; Han J; Cai H; Elgowainy A; Wang M
    Environ Sci Technol; 2014 Jul; 48(13):7625-33. PubMed ID: 24870020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels.
    Huo H; Wang M; Bloyd C; Putsche V
    Environ Sci Technol; 2009 Feb; 43(3):750-6. PubMed ID: 19245012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.
    Xie X; Wang M; Han J
    Environ Sci Technol; 2011 Apr; 45(7):3047-53. PubMed ID: 21370852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
    Elgowainy A; Han J; Cai H; Wang M; Forman GS; DiVita VB
    Environ Sci Technol; 2014 Jul; 48(13):7612-24. PubMed ID: 24869918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas.
    Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2008 Oct; 42(20):7559-65. PubMed ID: 18983075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.
    Cai H; Brandt AR; Yeh S; Englander JG; Han J; Elgowainy A; Wang MQ
    Environ Sci Technol; 2015 Jul; 49(13):8219-27. PubMed ID: 26054375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GHG Emissions Impact of Shifts in the Ratio of Gasoline to Diesel Production at U.S. Refineries: A PADD Level Analysis.
    Motazedi K; Posen ID; Bergerson JA
    Environ Sci Technol; 2018 Nov; 52(22):13609-13618. PubMed ID: 30354083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Life-Cycle Comparison of Alternative Automobile Fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-1779. PubMed ID: 28076232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels.
    Stratton RW; Wong HM; Hileman JI
    Environ Sci Technol; 2011 May; 45(10):4637-44. PubMed ID: 21513296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Oct; 45(19):8182-9. PubMed ID: 21846117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emissions savings in the corn-ethanol life cycle from feeding coproducts to livestock.
    Bremer VR; Liska AJ; Klopfenstein TJ; Erickson GE; Yang HS; Walters DT; Cassman KG
    J Environ Qual; 2010; 39(2):472-82. PubMed ID: 20176820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life Cycle Analysis of Fischer-Tropsch Diesel Produced by Tri-Reforming and Fischer-Tropsch Synthesis (TriFTS) of Landfill Gas.
    Poddar TK; Zaimes GG; Kar S; Walker DM; Hawkins TR
    Environ Sci Technol; 2023 Dec; 57(48):19602-19611. PubMed ID: 37955401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A; Azevedo IM; Michalek JJ
    Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H; Wang MQ
    Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ
    Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle GHG emissions from microalgal biodiesel--a CA-GREET model.
    Woertz IC; Benemann JR; Du N; Unnasch S; Mendola D; Mitchell BG; Lundquist TJ
    Environ Sci Technol; 2014 Jun; 48(11):6060-8. PubMed ID: 24779347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: impacts of crude quality and refinery configuration.
    Abella JP; Bergerson JA
    Environ Sci Technol; 2012 Dec; 46(24):13037-47. PubMed ID: 23013493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.