BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 25710678)

  • 1. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.
    Bi P; Wang J; Zhang Y; Jiang P; Wu X; Liu J; Xue H; Wang T; Li Q
    Bioresour Technol; 2015 May; 183():10-7. PubMed ID: 25710678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional synthesis of ethylbenzene through catalytic transformation of lignin.
    Fan M; Jiang P; Bi P; Deng S; Yan L; Zhai Q; Wang T; Li Q
    Bioresour Technol; 2013 Sep; 143():59-67. PubMed ID: 23777846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst.
    Duan D; Zhang Y; Lei H; Villota E; Ruan R
    Waste Manag; 2019 Apr; 88():1-9. PubMed ID: 31079620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence.
    Sreekumar S; Balakrishnan M; Goulas K; Gunbas G; Gokhale AA; Louie L; Grippo A; Scown CD; Bell AT; Toste FD
    ChemSusChem; 2015 Aug; 8(16):2609-14. PubMed ID: 26216783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin Depolymerization to BTXs.
    Serrano L; Cecilia JA; García-Sancho C; García A
    Top Curr Chem (Cham); 2019 Sep; 377(5):26. PubMed ID: 31529210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of jet fuel range branched cycloalkanes with mesityl oxide and 2-methylfuran from lignocellulose.
    Li S; Li N; Wang W; Li L; Wang A; Wang X; Zhang T
    Sci Rep; 2016 Sep; 6():32379. PubMed ID: 27582417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials.
    Stöcker M
    Angew Chem Int Ed Engl; 2008; 47(48):9200-11. PubMed ID: 18937235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Coupling of Biomass-Derived Acids: New C
    Wu L; Mascal M; Farmer TJ; Arnaud SP; Wong Chang MA
    ChemSusChem; 2017 Jan; 10(1):166-170. PubMed ID: 27873475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable biofuel additives from the ozonolysis of lignin.
    Chuck CJ; Parker HJ; Jenkins RW; Donnelly J
    Bioresour Technol; 2013 Sep; 143():549-54. PubMed ID: 23831897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective hydrogenation of furan-containing condensation products as a source of biomass-derived diesel additives.
    Balakrishnan M; Sacia ER; Bell AT
    ChemSusChem; 2014 Oct; 7(10):2796-800. PubMed ID: 25169952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis.
    Liu D; Chen EY
    ChemSusChem; 2013 Dec; 6(12):2236-9. PubMed ID: 23939751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.
    Shylesh S; Gokhale AA; Ho CR; Bell AT
    Acc Chem Res; 2017 Oct; 50(10):2589-2597. PubMed ID: 28930430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose.
    Li G; Li N; Yang J; Wang A; Wang X; Cong Y; Zhang T
    Bioresour Technol; 2013 Apr; 134():66-72. PubMed ID: 23500561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.
    Sacia ER; Balakrishnan M; Deaner MH; Goulas KA; Toste FD; Bell AT
    ChemSusChem; 2015 May; 8(10):1726-36. PubMed ID: 25891778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of high-quality diesel from biomass waste products.
    Corma A; de la Torre O; Renz M; Villandier N
    Angew Chem Int Ed Engl; 2011 Mar; 50(10):2375-8. PubMed ID: 21351358
    [No Abstract]   [Full Text] [Related]  

  • 16. Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks.
    Geiselman GM; Kirby J; Landera A; Otoupal P; Papa G; Barcelos C; Sundstrom ER; Das L; Magurudeniya HD; Wehrs M; Rodriguez A; Simmons BA; Magnuson JK; Mukhopadhyay A; Lee TS; George A; Gladden JM
    Microb Cell Fact; 2020 Nov; 19(1):208. PubMed ID: 33183275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic depolymerization of lignin in supercritical ethanol.
    Huang X; Korányi TI; Boot MD; Hensen EJ
    ChemSusChem; 2014 Aug; 7(8):2276-88. PubMed ID: 24867490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of chemical catalysis with extractive fermentation to produce fuels.
    Anbarasan P; Baer ZC; Sreekumar S; Gross E; Binder JB; Blanch HW; Clark DS; Toste FD
    Nature; 2012 Nov; 491(7423):235-9. PubMed ID: 23135469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in one-stage conversion of lipid-based biomass-derived oils into fuel components - aromatics and isomerized alkanes.
    Yeletsky PM; Kukushkin RG; Yakovlev VA; Chen BH
    Fuel (Lond); 2020 Oct; 278():118255. PubMed ID: 32834073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.
    Liu Q; Xu G; Wang X; Liu X; Mu X
    ChemSusChem; 2016 Dec; 9(24):3465-3472. PubMed ID: 27896953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.