These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25710882)
41. Is a Bent Crystal Still a Single Crystal? Commins P; Karothu DP; Naumov P Angew Chem Int Ed Engl; 2019 Jul; 58(30):10052-10060. PubMed ID: 30762922 [TBL] [Abstract][Full Text] [Related]
42. Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation. Kardani A; Montazeri A Sci Rep; 2020 Jun; 10(1):9745. PubMed ID: 32546743 [TBL] [Abstract][Full Text] [Related]
43. Superplasticity in an organic crystal. Takamizawa S; Takasaki Y; Sasaki T; Ozaki N Nat Commun; 2018 Sep; 9(1):3984. PubMed ID: 30266968 [TBL] [Abstract][Full Text] [Related]
44. Anisotropic crystal deformation measurements determined using powder X-ray diffraction and a new in situ compression stage. Haware RV; Kim P; Ruffino L; Nimi B; Fadrowsky C; Doyle M; Boerrigter SX; Cuitino A; Morris K Int J Pharm; 2011 Oct; 418(2):199-206. PubMed ID: 21708235 [TBL] [Abstract][Full Text] [Related]
45. Hard-sphere displacive model of deformation twinning in hexagonal close-packed metals. Revisiting the case of the (56°, a) contraction twins in magnesium. Cayron C Acta Crystallogr A Found Adv; 2017 Jul; 73(Pt 4):346-356. PubMed ID: 28660866 [TBL] [Abstract][Full Text] [Related]
46. Electron transfer activity of nickelacyclic complex analogues of nickelocene: synthesis of (eta(5)-R-cyclopentadienyl){eta(4)-[1-(eta(5)-R-cyclopentadienyl)]-2,3,4,5-tetraphenyl-1-nickela-2-cyclopentenyl}nickel complexes (R = H, CH(3)) and crystal structures of the redox couples [(eta(5)- methylcyclopentadienyl){eta(4)-[1-(eta(5)-methylcyclopentadienyl)]-2,3,4,5-tetraphenyl-1-nickela-2-cyclopentenyl}nickel]((0/+)) and [(eta(5)-methylcyclopentadienyl){eta(5)-[1-(eta(5)-methylcyclopentadienyl)-1-nickelafluorenyl}nickel]((0/+)). Losi S; Rossi F; Laschi F; Biani FF; Zanello P; Buchalski P; Burakowska K; Piwowar K; Zbrzezna J; Pasynkiewicz S; Pietrzykowski A; Suwińska K; Jerzykiewicz L Inorg Chem; 2007 Dec; 46(25):10659-69. PubMed ID: 17994728 [TBL] [Abstract][Full Text] [Related]
47. Wedge dislocation as the elastic counterpart of a crystal deformation twin. Armstrong RW Science; 1968 Nov; 162(3855):799-800. PubMed ID: 17794812 [TBL] [Abstract][Full Text] [Related]
48. In situ observation of the atomic shuffles during the { He Y; Fang Z; Wang C; Wang G; Mao SX Nat Commun; 2024 Apr; 15(1):2994. PubMed ID: 38582808 [TBL] [Abstract][Full Text] [Related]
49. Polymer rings and chains consisting of doubly silyl-bridged metallocenes. Köhler FH; Schell A; Weber B Chemistry; 2002 Nov; 8(22):5219-27. PubMed ID: 12613041 [TBL] [Abstract][Full Text] [Related]
50. Superelastic shape recovery of mechanically twinned 3,5-difluorobenzoic acid crystals. Takamizawa S; Takasaki Y Angew Chem Int Ed Engl; 2015 Apr; 54(16):4815-7. PubMed ID: 25705996 [TBL] [Abstract][Full Text] [Related]
51. Deformation behavior of human enamel and dentin-enamel junction under compression. Zaytsev D; Panfilov P Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():15-21. PubMed ID: 24268228 [TBL] [Abstract][Full Text] [Related]
52. Redox control of rotary motions in ferrocene-based elemental ball bearings. Iordache A; Oltean M; Milet A; Thomas F; Baptiste B; Saint-Aman E; Bucher C J Am Chem Soc; 2012 Feb; 134(5):2653-71. PubMed ID: 22148394 [TBL] [Abstract][Full Text] [Related]
53. More electron rich than cyclopentadienyl: 1,2-diaza-3,5-diborolyl as a ligand in ferrocene and ruthenocene analogs. Ly HV; Moilanen J; Tuononen HM; Parvez M; Roesler R Chem Commun (Camb); 2011 Aug; 47(29):8391-3. PubMed ID: 21706075 [TBL] [Abstract][Full Text] [Related]
54. Synthesis, structures, and electronic properties of triple- and double-decker ruthenocenes incorporated by a group 14 metallole dianion ligand. Kuwabara T; Guo JD; Nagase S; Sasamori T; Tokitoh N; Saito M J Am Chem Soc; 2014 Sep; 136(37):13059-64. PubMed ID: 25148199 [TBL] [Abstract][Full Text] [Related]
55. Protein crystal structures with ferrocene and ruthenocene-based enzyme inhibitors. Salmon AJ; Williams ML; Hofmann A; Poulsen SA Chem Commun (Camb); 2012 Feb; 48(17):2328-30. PubMed ID: 22258283 [TBL] [Abstract][Full Text] [Related]
56. Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy. Zhang Z; Yang S; Guo D; Yuan B; Guo X; Zhang B; Huo Y Sci Rep; 2015 Jun; 5():11290. PubMed ID: 26060979 [TBL] [Abstract][Full Text] [Related]
57. Detecting and overcoming crystal twinning. Yeates TO Methods Enzymol; 1997; 276():344-58. PubMed ID: 9048378 [TBL] [Abstract][Full Text] [Related]
58. Deformation Twinning of a Silver Nanocrystal under High Pressure. Huang X; Yang W; Harder R; Sun Y; Lu M; Chu YS; Robinson IK; Mao HK Nano Lett; 2015 Nov; 15(11):7644-9. PubMed ID: 26484941 [TBL] [Abstract][Full Text] [Related]
59. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures. Moriuchi T; Hirao T Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253 [TBL] [Abstract][Full Text] [Related]
60. How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data. Harris KD; Cheung EY Chem Soc Rev; 2004 Oct; 33(8):526-38. PubMed ID: 15480476 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]