These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25710901)

  • 21. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.
    Ouyang W; Guo B; Hao F; Huang H; Li J; Gong Y
    J Environ Manage; 2012 Dec; 113():467-73. PubMed ID: 23122620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Farmyards, an overlooked source for highly contaminated runoff.
    Edwards AC; Kay D; McDonald AT; Francis C; Watkins J; Wilkinson JR; Wyer MD
    J Environ Manage; 2008 Jun; 87(4):551-9. PubMed ID: 18179860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters.
    Evanson M; Ambrose RF
    Water Res; 2006 Feb; 40(3):475-86. PubMed ID: 16386284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection and disinfection of pathogens in storm-generated flows.
    O'Shea ML; Field R
    Can J Microbiol; 1992 Apr; 38(4):267-76. PubMed ID: 1611552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics.
    Murphy LU; Cochrane TA; O'Sullivan A
    Sci Total Environ; 2015 Mar; 508():206-13. PubMed ID: 25478658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of nonpoint source microbial contamination in an urbanizing watershed serving as a municipal water supply.
    Rowny JG; Stewart JR
    Water Res; 2012 Nov; 46(18):6143-53. PubMed ID: 23021518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing.
    Noble RT; Moore DF; Leecaster MK; McGee CD; Weisberg SB
    Water Res; 2003 Apr; 37(7):1637-43. PubMed ID: 12600392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of runoff from various urban catchments at different spatial scales in Beijing, China.
    Zhang W; Che W; Liu DK; Gan YP; Lv FF
    Water Sci Technol; 2012; 66(1):21-7. PubMed ID: 22678196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia.
    Sidhu JP; Hodgers L; Ahmed W; Chong MN; Toze S
    Water Res; 2012 Dec; 46(20):6652-60. PubMed ID: 22572123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new modeling approach for estimating first flush metal mass loading.
    Kim LH; Kayhanian M; Lau SL; Stenstrom MK
    Water Sci Technol; 2005; 51(3-4):159-67. PubMed ID: 15850186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Storm loads of culturable and molecular fecal indicators in an inland urban stream.
    Liao H; Krometis LH; Cully Hession W; Benitez R; Sawyer R; Schaberg E; von Wagoner E; Badgley BD
    Sci Total Environ; 2015 Oct; 530-531():347-356. PubMed ID: 26050960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metals and bacteria partitioning to various size particles in Ballona Creek storm water runoff.
    Brown JS; Stein ED; Ackerman D; Dorsey JH; Lyon J; Carter PM
    Environ Toxicol Chem; 2013 Feb; 32(2):320-8. PubMed ID: 23161663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.
    Paule-Mercado MA; Ventura JS; Memon SA; Jahng D; Kang JH; Lee CH
    Sci Total Environ; 2016 Apr; 550():1171-1181. PubMed ID: 26895037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Urban wet-weather flows: sources of fecal contamination impacting on recreational waters and threatening drinking-water sources.
    Marsalek J; Rochfort Q
    J Toxicol Environ Health A; 2004 Oct 22-Nov 26; 67(20-22):1765-77. PubMed ID: 15371215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of pollutant concentrations from weekly discrete versus composite samples for residential dry-weather runoff.
    Pitton BJ; Dodge LL; Gan J; Greco SE; Haver DL; Lee E; Majcherek TJ; Oki LR
    J Environ Manage; 2016 Sep; 180():10-6. PubMed ID: 27192386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Source-pathway separation of multiple contaminants during a rainfall-runoff event in an artificially drained agricultural watershed.
    Tomer MD; Wilson CG; Moorman TB; Cole KJ; Heer D; Isenhart TM
    J Environ Qual; 2010; 39(3):882-95. PubMed ID: 20400584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stormwater runoff plumes in the Southern California Bight: A comparison study with SAR and MODIS imagery.
    Holt B; Trinh R; Gierach MM
    Mar Pollut Bull; 2017 May; 118(1-2):141-154. PubMed ID: 28238485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database.
    Pan X; Jones KD
    Water Sci Technol; 2012; 65(6):1076-80. PubMed ID: 22378005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing microbial contamination in storm runoff from high use areas on California coastal dairies.
    Lewis DJ; Atwill ER; Lennox MS; Pereira MD; Miller WA; Conrad PA; Tate KW
    Water Sci Technol; 2009; 60(7):1731-43. PubMed ID: 19809136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation of microorganism concentrations in urban stormwater runoff with land use and seasons.
    Selvakumar A; Borst M
    J Water Health; 2006 Mar; 4(1):109-24. PubMed ID: 16604843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.