BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25711127)

  • 1. Improved Plasmids for Fluorescent Protein Tagging of Microtubules in Saccharomyces cerevisiae.
    Markus SM; Omer S; Baranowski K; Lee WL
    Traffic; 2015 Jul; 16(7):773-786. PubMed ID: 25711127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule-associated proteins, Bik1 and Bim1, are required for faithful partitioning of the endogenous 2 micron plasmids in budding yeast.
    Prajapati HK; Rizvi SM; Rathore I; Ghosh SK
    Mol Microbiol; 2017 Mar; 103(6):1046-1064. PubMed ID: 28004422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae.
    Lee S; Lim WA; Thorn KS
    PLoS One; 2013; 8(7):e67902. PubMed ID: 23844123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BIM1 encodes a microtubule-binding protein in yeast.
    Schwartz K; Richards K; Botstein D
    Mol Biol Cell; 1997 Dec; 8(12):2677-91. PubMed ID: 9398684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin.
    Caron JM; Vega LR; Fleming J; Bishop R; Solomon F
    Mol Biol Cell; 2001 Sep; 12(9):2672-87. PubMed ID: 11553707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for the yeast CLIP170 ortholog, the plus-end-tracking protein Bik1, and the Rho1 GTPase in Snc1 trafficking.
    Boscheron C; Caudron F; Loeillet S; Peloso C; Mugnier M; Kurzawa L; Nicolas A; Denarier E; Aubry L; Andrieux A
    J Cell Sci; 2016 Sep; 129(17):3332-41. PubMed ID: 27466378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two alpha-tubulin isotypes in budding yeast have opposing effects on microtubule dynamics in vitro.
    Bode CJ; Gupta ML; Suprenant KA; Himes RH
    EMBO Rep; 2003 Jan; 4(1):94-9. PubMed ID: 12524528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. α-tubulin regulation by 5' introns in Saccharomyces cerevisiae.
    Wethekam LC; Moore JK
    Genetics; 2023 Dec; 225(4):. PubMed ID: 37675603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A set of Saccharomyces cerevisiae integration vectors for fluorescent dye labeling of proteins.
    Baek I; Le SN; Jeon J; Chun Y; Reed C; Buratowski S
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35944214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of a conditional mutation in alpha-tubulin by overexpression of two checkpoint genes.
    Guénette S; Magendantz M; Solomon F
    J Cell Sci; 1995 Mar; 108 ( Pt 3)():1195-204. PubMed ID: 7622604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. beta-Tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast.
    Gupta ML; Bode CJ; Thrower DA; Pearson CG; Suprenant KA; Bloom KS; Himes RH
    Mol Biol Cell; 2002 Aug; 13(8):2919-32. PubMed ID: 12181356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of autophagy-related proteins in yeast using a versatile plasmid-based resource of fluorescent protein fusions.
    Ma J; Bharucha N; Dobry CJ; Frisch RL; Lawson S; Kumar A
    Autophagy; 2008 Aug; 4(6):792-800. PubMed ID: 18497569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins.
    Blake-Hodek KA; Cassimeris L; Huffaker TC
    Mol Biol Cell; 2010 Jun; 21(12):2013-23. PubMed ID: 20392838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of conditional-lethal mutations in the TUB1 alpha-tubulin gene of the yeast Saccharomyces cerevisiae.
    Schatz PJ; Solomon F; Botstein D
    Genetics; 1988 Nov; 120(3):681-95. PubMed ID: 3066684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae.
    Burns CG; Ohi R; Mehta S; O'Toole ET; Winey M; Clark TA; Sugnet CW; Ares M; Gould KL
    Mol Cell Biol; 2002 Feb; 22(3):801-15. PubMed ID: 11784857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables.
    Hwang E; Kusch J; Barral Y; Huffaker TC
    J Cell Biol; 2003 May; 161(3):483-8. PubMed ID: 12743102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function analysis of yeast tubulin.
    Luchniak A; Fukuda Y; Gupta ML
    Methods Cell Biol; 2013; 115():355-74. PubMed ID: 23973083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule disruption stimulates P-body formation.
    Sweet TJ; Boyer B; Hu W; Baker KE; Coller J
    RNA; 2007 Apr; 13(4):493-502. PubMed ID: 17307817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The minus end-directed motor Kar3 is required for coupling dynamic microtubule plus ends to the cortical shmoo tip in budding yeast.
    Maddox PS; Stemple JK; Satterwhite L; Salmon ED; Bloom K
    Curr Biol; 2003 Aug; 13(16):1423-8. PubMed ID: 12932327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoactivatable GFP tagging cassettes for protein-tracking studies in the budding yeast Saccharomyces cerevisiae.
    Vorvis C; Markus SM; Lee WL
    Yeast; 2008 Sep; 25(9):651-9. PubMed ID: 18727145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.