These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25711127)

  • 21. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae.
    Maddox P; Chin E; Mallavarapu A; Yeh E; Salmon ED; Bloom K
    J Cell Biol; 1999 Mar; 144(5):977-87. PubMed ID: 10085295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae.
    Rizvi SMA; Prajapati HK; Ghosh SK
    Curr Genet; 2018 Feb; 64(1):25-42. PubMed ID: 28597305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-Function Relationship of the Bik1-Bim1 Complex.
    Stangier MM; Kumar A; Chen X; Farcas AM; Barral Y; Steinmetz MO
    Structure; 2018 Apr; 26(4):607-618.e4. PubMed ID: 29576319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast.
    Beach DL; Thibodeaux J; Maddox P; Yeh E; Bloom K
    Curr Biol; 2000 Nov; 10(23):1497-506. PubMed ID: 11114516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A method for labeling proteins with tags at the native genomic loci in budding yeast.
    Wang Q; Xue H; Li S; Chen Y; Tian X; Xu X; Xiao W; Fu YV
    PLoS One; 2017; 12(5):e0176184. PubMed ID: 28459859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation.
    Carvalho P; Gupta ML; Hoyt MA; Pellman D
    Dev Cell; 2004 Jun; 6(6):815-29. PubMed ID: 15177030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The budding yeast protein Sum1 functions independently of its binding partners Hst1 and Sir2 histone deacetylases to regulate microtubule assembly.
    Sarkar S; Haldar S; Hajra S; Sinha P
    FEMS Yeast Res; 2010 Sep; 10(6):660-73. PubMed ID: 20608984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency.
    Podolski M; Mahamdeh M; Howard J
    J Biol Chem; 2014 Oct; 289(41):28087-93. PubMed ID: 25172511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy.
    Pearson CG; Gardner MK; Paliulis LV; Salmon ED; Odde DJ; Bloom K
    Mol Biol Cell; 2006 Sep; 17(9):4069-79. PubMed ID: 16807354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Saccharomyces cerevisiae Tub1 alpha-tubulin as a potential target for NKH-7, a cytotoxic 1-naphthol derivative compound.
    Chanklan R; Mizunuma M; Kongkathip N; Hasitapan K; Kongkathip B; Miyakawa T
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):1023-31. PubMed ID: 18391444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tubulin isotypes optimize distinct spindle positioning mechanisms during yeast mitosis.
    Nsamba ET; Bera A; Costanzo M; Boone C; Gupta ML
    J Cell Biol; 2021 Dec; 220(12):. PubMed ID: 34739032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural differences between yeast and mammalian microtubules revealed by cryo-EM.
    Howes SC; Geyer EA; LaFrance B; Zhang R; Kellogg EH; Westermann S; Rice LM; Nogales E
    J Cell Biol; 2017 Sep; 216(9):2669-2677. PubMed ID: 28652389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kar9p-independent microtubule capture at Bud6p cortical sites primes spindle polarity before bud emergence in Saccharomyces cerevisiae.
    Segal M; Bloom K; Reed SI
    Mol Biol Cell; 2002 Dec; 13(12):4141-55. PubMed ID: 12475941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design principles of a microtubule polymerase.
    Geyer EA; Miller MP; Brautigam CA; Biggins S; Rice LM
    Elife; 2018 Jun; 7():. PubMed ID: 29897335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae.
    Maddox PS; Bloom KS; Salmon ED
    Nat Cell Biol; 2000 Jan; 2(1):36-41. PubMed ID: 10620805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation regulates kinase and microtubule binding activities of the budding yeast chromosomal passenger complex in vitro.
    Cormier A; Drubin DG; Barnes G
    J Biol Chem; 2013 Aug; 288(32):23203-11. PubMed ID: 23814063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin.
    Badin-Larçon AC; Boscheron C; Soleilhac JM; Piel M; Mann C; Denarier E; Fourest-Lieuvin A; Lafanechère L; Bornens M; Job D
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5577-82. PubMed ID: 15031428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions.
    Jiang Y; Di Gregorio SE; Duennwald ML; Lajoie P
    Traffic; 2017 Jan; 18(1):58-70. PubMed ID: 27734565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of recombinant multi-protein complexes in Saccharomyces cerevisiae.
    Mayle R; O'Donnell M
    Methods Enzymol; 2021; 660():3-20. PubMed ID: 34742395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The regulation of microtubule dynamics in Saccharomyces cerevisiae by three interacting plus-end tracking proteins.
    Wolyniak MJ; Blake-Hodek K; Kosco K; Hwang E; You L; Huffaker TC
    Mol Biol Cell; 2006 Jun; 17(6):2789-98. PubMed ID: 16571681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.