These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 25711437)
1. Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Dent RM; Sharifi MN; Malnoë A; Haglund C; Calderon RH; Wakao S; Niyogi KK Plant J; 2015 Apr; 82(2):337-51. PubMed ID: 25711437 [TBL] [Abstract][Full Text] [Related]
2. Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Dent RM; Haglund CM; Chin BL; Kobayashi MC; Niyogi KK Plant Physiol; 2005 Feb; 137(2):545-56. PubMed ID: 15653810 [TBL] [Abstract][Full Text] [Related]
3. Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii. Wakao S; Shih PM; Guan K; Schackwitz W; Ye J; Patel D; Shih RM; Dent RM; Chovatia M; Sharma A; Martin J; Wei CL; Niyogi KK PLoS Genet; 2021 Sep; 17(9):e1009725. PubMed ID: 34492001 [TBL] [Abstract][Full Text] [Related]
4. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Grossman A; Sanz-Luque E; Yi H; Yang W Microbiology (Reading); 2019 Jul; 165(7):697-718. PubMed ID: 31063126 [TBL] [Abstract][Full Text] [Related]
5. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. Grossman AR; Karpowicz SJ; Heinnickel M; Dewez D; Hamel B; Dent R; Niyogi KK; Johnson X; Alric J; Wollman FA; Li H; Merchant SS Photosynth Res; 2010 Nov; 106(1-2):3-17. PubMed ID: 20490922 [TBL] [Abstract][Full Text] [Related]
6. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review. Salinas T; Larosa V; Cardol P; Maréchal-Drouard L; Remacle C Biochimie; 2014 May; 100():207-18. PubMed ID: 24139906 [TBL] [Abstract][Full Text] [Related]
7. Biogenesis of photosynthetic complexes in the chloroplast of Chlamydomonas reinhardtii requires ARSA1, a homolog of prokaryotic arsenite transporter and eukaryotic TRC40 for guided entry of tail-anchored proteins. Formighieri C; Cazzaniga S; Kuras R; Bassi R Plant J; 2013 Mar; 73(5):850-61. PubMed ID: 23167510 [TBL] [Abstract][Full Text] [Related]
8. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement. Massoz S; Larosa V; Horrion B; Matagne RF; Remacle C; Cardol P J Biotechnol; 2015 Dec; 215():27-34. PubMed ID: 26022424 [TBL] [Abstract][Full Text] [Related]
9. Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas. Galván A; González-Ballester D; Fernández E Adv Exp Med Biol; 2007; 616():77-89. PubMed ID: 18161492 [TBL] [Abstract][Full Text] [Related]
10. Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Dent RM; Han M; Niyogi KK Trends Plant Sci; 2001 Aug; 6(8):364-71. PubMed ID: 11495790 [TBL] [Abstract][Full Text] [Related]
11. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. Li X; Zhang R; Patena W; Gang SS; Blum SR; Ivanova N; Yue R; Robertson JM; Lefebvre PA; Fitz-Gibbon ST; Grossman AR; Jonikas MC Plant Cell; 2016 Feb; 28(2):367-87. PubMed ID: 26764374 [TBL] [Abstract][Full Text] [Related]
12. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Polle JE; Kanakagiri SD; Melis A Planta; 2003 May; 217(1):49-59. PubMed ID: 12721848 [TBL] [Abstract][Full Text] [Related]
13. Isolation and Characterization of ARGONAUTE Mutants in Chlamydomonas. Yamasaki T Methods Mol Biol; 2017; 1640():159-172. PubMed ID: 28608341 [TBL] [Abstract][Full Text] [Related]
14. Chlamydomonas nuclear mutants that fail to assemble respiratory or photosynthetic electron transfer complexes. Lown FJ; Watson AT; Purton S Biochem Soc Trans; 2001 Aug; 29(Pt 4):452-5. PubMed ID: 11498007 [TBL] [Abstract][Full Text] [Related]
15. Chlamydomonas reinhardtii as the photosynthetic yeast. Rochaix JD Annu Rev Genet; 1995; 29():209-30. PubMed ID: 8825474 [TBL] [Abstract][Full Text] [Related]
16. Insertional suppressors of Chlamydomonas reinhardtii that restore growth of air-dier lcib mutants in low CO2. Duanmu D; Spalding MH Photosynth Res; 2011 Sep; 109(1-3):123-32. PubMed ID: 21409559 [TBL] [Abstract][Full Text] [Related]
18. In vivo chlorophyll fluorescence screening allows the isolation of a Chlamydomonas mutant defective for NDUFAF3, an assembly factor involved in mitochondrial complex I assembly. Massoz S; Hanikenne M; Bailleul B; Coosemans N; Radoux M; Miranda-Astudillo H; Cardol P; Larosa V; Remacle C Plant J; 2017 Nov; 92(4):584-595. PubMed ID: 28857403 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5'-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii. Emonds-Alt B; Coosemans N; Gerards T; Remacle C; Cardol P Plant J; 2017 Jan; 89(1):141-154. PubMed ID: 27612091 [TBL] [Abstract][Full Text] [Related]
20. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere. Pollock SV; Colombo SL; Prout DL; Godfrey AC; Moroney JV Plant Physiol; 2003 Dec; 133(4):1854-61. PubMed ID: 14605215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]