BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25711809)

  • 1. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic.
    Jia X; Ding N; Fan W; Yan J; Gu Y; Tang X; Li R; Tang G
    Plant Sci; 2015 Apr; 233():11-21. PubMed ID: 25711809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The miR165/166-PHABULOSA module promotes thermotolerance by transcriptionally and posttranslationally regulating HSFA1.
    Li J; Cao Y; Zhang J; Zhu C; Tang G; Yan J
    Plant Cell; 2023 Aug; 35(8):2952-2971. PubMed ID: 37132478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An AGO10:miR165/6 module regulates meristem activity and xylem development in the Arabidopsis root.
    Mirlohi S; Schott G; Imboden A; Voinnet O
    EMBO J; 2024 May; 43(9):1843-1869. PubMed ID: 38565948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In the heat of the moment: The miR165/166-PHB module mediates thermotolerance in Arabidopsis.
    Hendrix S
    Plant Cell; 2023 Aug; 35(8):2711-2712. PubMed ID: 37225407
    [No Abstract]   [Full Text] [Related]  

  • 5. Arabidopsis CDF3 transcription factor increases carbon and nitrogen assimilation and yield in trans-grafted tomato plants.
    Renau-Morata B; Jiménez-Benavente E; Gil-Villar D; Cebolla-Cornejo J; Romero-Hernández G; Carrillo L; Vicente-Carbajosa J; Medina J; Molina RV; Nebauer SG
    Plant Physiol Biochem; 2024 May; 210():108607. PubMed ID: 38593486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR160 and miR166/165 Contribute to the
    Wójcik AM; Nodine MD; Gaj MD
    Front Plant Sci; 2017; 8():2024. PubMed ID: 29321785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Manipulation of MicroRNA397 Abundance Influences the Development and Salt Stress Response of
    Nguyen DQ; Brown CW; Pegler JL; Eamens AL; Grof CPL
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114207
    [No Abstract]   [Full Text] [Related]  

  • 8. Phenotyping in Arabidopsis and Crops-Are We Addressing the Same Traits? A Case Study in Tomato.
    Krukowski PK; Ellenberger J; Röhlen-Schmittgen S; Schubert A; Cardinale F
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32867311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARGONAUTE10 controls cell fate specification and formative cell divisions in the Arabidopsis root.
    El Arbi N; Schürholz AK; Handl MU; Schiffner A; Hidalgo Prados I; Schnurbusch L; Wenzl C; Zhao X; Zeng J; Lohmann JU; Wolf S
    EMBO J; 2024 May; 43(9):1822-1842. PubMed ID: 38565947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis.
    Abdel-Ghany SE; Pilon M
    J Biol Chem; 2008 Jun; 283(23):15932-45. PubMed ID: 18408011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic characterization of the response to a microalgae extract in Arabidopsis thaliana and Solanum lycopersicum.
    Arvanitidou C; Ramos-González M; Romero-Losada AB; García-Gómez ME; García-González M; Romero-Campero FJ
    J Sci Food Agric; 2024 Aug; 104(10):5789-5798. PubMed ID: 38436436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant biology: Managing age-related bursts during leaf development.
    Helariutta Y
    Curr Biol; 2024 Feb; 34(3):R100-R101. PubMed ID: 38320472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance.
    Zhou Y; Honda M; Zhu H; Zhang Z; Guo X; Li T; Li Z; Peng X; Nakajima K; Duan L; Zhang X
    Cell Rep; 2015 Mar; 10(11):1819-27. PubMed ID: 25801022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary transcripts of microRNAs encode regulatory peptides.
    Lauressergues D; Couzigou JM; Clemente HS; Martinez Y; Dunand C; Bécard G; Combier JP
    Nature; 2015 Apr; 520(7545):90-3. PubMed ID: 25807486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular mechanism that confines the activity pattern of miR165 in Arabidopsis leaf primordia.
    Tatematsu K; Toyokura K; Miyashima S; Nakajima K; Okada K
    Plant J; 2015 May; 82(4):596-608. PubMed ID: 25788175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation.
    Du Q; Wang H
    Plant Signal Behav; 2015; 10(10):e1078955. PubMed ID: 26340415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The micro-RNA72c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis.
    Nova-Franco B; Íñiguez LP; Valdés-López O; Alvarado-Affantranger X; Leija A; Fuentes SI; Ramírez M; Paul S; Reyes JL; Girard L; Hernández G
    Plant Physiol; 2015 May; 168(1):273-91. PubMed ID: 25739700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana.
    Sebastian J; Ryu KH; Zhou J; Tarkowská D; Tarkowski P; Cho YH; Yoo SD; Kim ES; Lee JY
    PLoS Genet; 2015 Mar; 11(3):e1004973. PubMed ID: 25730098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis.
    Wang JJ; Guo HS
    Plant Cell; 2015 Mar; 27(3):574-90. PubMed ID: 25794935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient method for miRNA detection and localization in crop plants.
    Rosas-Cárdenas Fde F; Escobar-Guzmán R; Cruz-Hernández A; Marsch-Martínez N; de Folter S
    Front Plant Sci; 2015; 6():99. PubMed ID: 25784917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.