These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 25711909)
1. A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs. Zong C; Wang M; Yang F; Chen G; Chen J; Tang Z; Liu Q; Gao C; Ma L; Wang J J Tissue Eng Regen Med; 2017 Apr; 11(4):966-976. PubMed ID: 25711909 [TBL] [Abstract][Full Text] [Related]
2. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
3. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970 [TBL] [Abstract][Full Text] [Related]
4. The compatibility of swine BMDC-derived bile duct endothelial cells with a nanostructured electrospun PLGA material. Zhou J; Yang Y; Yin X; Xu Y; Cao Y; Xu Q Int J Artif Organs; 2013 Feb; 36(2):121-30. PubMed ID: 23335380 [TBL] [Abstract][Full Text] [Related]
5. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
6. Hepatogenic engineering from human bone marrow mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture. Wang J; Zong C; Shi D; Wang W; Shen D; Liu L; Tong X; Zheng Q; Gao C J Tissue Eng Regen Med; 2012 Jan; 6(1):29-39. PubMed ID: 21394930 [TBL] [Abstract][Full Text] [Related]
7. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]
8. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair. Li H; Yin Y; Xiang Y; Liu H; Guo R Biomed Mater; 2020 May; 15(4):045004. PubMed ID: 32092713 [TBL] [Abstract][Full Text] [Related]
9. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds. Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403 [TBL] [Abstract][Full Text] [Related]
10. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694 [TBL] [Abstract][Full Text] [Related]
11. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543 [TBL] [Abstract][Full Text] [Related]
12. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure. Liu M; Yang J; Hu W; Zhang S; Wang Y Biomed Mater; 2016 Feb; 11(1):015008. PubMed ID: 26836957 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. Thi Hiep N; Chan Khon H; Dai Hai N; Byong-Taek L; Van Toi V; Thanh Hung L J Biomater Sci Polym Ed; 2017 Jun; 28(9):864-878. PubMed ID: 28345449 [TBL] [Abstract][Full Text] [Related]
14. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Zhu S; Zhang B; Man C; Ma Y; Liu X; Hu J Cell Transplant; 2014 Apr; 23(6):715-27. PubMed ID: 24763260 [TBL] [Abstract][Full Text] [Related]
16. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation. Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490 [TBL] [Abstract][Full Text] [Related]
17. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268 [TBL] [Abstract][Full Text] [Related]
18. Tissue engineered regeneration of completely transected spinal cord using human mesenchymal stem cells. Kang KN; Kim DY; Yoon SM; Lee JY; Lee BN; Kwon JS; Seo HW; Lee IW; Shin HC; Kim YM; Kim HS; Kim JH; Min BH; Lee HB; Kim MS Biomaterials; 2012 Jun; 33(19):4828-35. PubMed ID: 22498301 [TBL] [Abstract][Full Text] [Related]
19. [Experimental studies on a new bone tissue engineered scaffold biomaterials combined with cultured marrow stromal stem cells in vitro]. Pan H; Zheng Q; Guo X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):65-9. PubMed ID: 17305008 [TBL] [Abstract][Full Text] [Related]
20. PLGA-PTMC-Cultured Bone Mesenchymal Stem Cell Scaffold Enhances Cartilage Regeneration in Tissue-Engineered Tracheal Transplantation. Yan B; Zhang Z; Wang X; Ni Y; Liu Y; Liu T; Wang W; Xing H; Sun Y; Wang J; Li XF Artif Organs; 2017 May; 41(5):461-469. PubMed ID: 27925229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]