These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25712091)

  • 21. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Absolute quality evaluation of protein model structures using statistical potentials with respect to the native and reference states.
    Shirota M; Ishida T; Kinoshita K
    Proteins; 2011 May; 79(5):1550-63. PubMed ID: 21365682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the accuracy of NMR structures of RNA by means of conformational database potentials of mean force as assessed by complete dipolar coupling cross-validation.
    Clore GM; Kuszewski J
    J Am Chem Soc; 2003 Feb; 125(6):1518-25. PubMed ID: 12568611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-Atom Knowledge-Based Potential for RNA Structure Discrimination Based on the Distance-Scaled Finite Ideal-Gas Reference State.
    Zhang T; Hu G; Yang Y; Wang J; Zhou Y
    J Comput Biol; 2020 Jun; 27(6):856-867. PubMed ID: 31638408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
    Boniecki MJ; Lach G; Dawson WK; Tomala K; Lukasz P; Soltysinski T; Rother KM; Bujnicki JM
    Nucleic Acids Res; 2016 Apr; 44(7):e63. PubMed ID: 26687716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A coarse-grained model with implicit salt for RNAs: predicting 3D structure, stability and salt effect.
    Shi YZ; Wang FH; Wu YY; Tan ZJ
    J Chem Phys; 2014 Sep; 141(10):105102. PubMed ID: 25217954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine-grained statistical torsion angle potentials are effective in discriminating native protein structures.
    Albiero A; Tosatto SC
    Curr Drug Discov Technol; 2006 Mar; 3(1):75-81. PubMed ID: 16712465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of sequentially optimal RNA secondary structures.
    Breton N; Jacob C; Daegelen P
    J Biomol Struct Dyn; 1997 Jun; 14(6):727-40. PubMed ID: 9195341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent.
    Heus HA; Wijmenga SS; Hoppe H; Hilbers CW
    J Mol Biol; 1997 Aug; 271(1):147-58. PubMed ID: 9300061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting RNA 3D structure using a coarse-grain helix-centered model.
    Kerpedjiev P; Höner Zu Siederdissen C; Hofacker IL
    RNA; 2015 Jun; 21(6):1110-21. PubMed ID: 25904133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Second eigenvalue of the Laplacian matrix for predicting RNA conformational switch by mutation.
    Barash D
    Bioinformatics; 2004 Aug; 20(12):1861-9. PubMed ID: 14988109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near native structure in an RNA collapsed state.
    Buchmueller KL; Weeks KM
    Biochemistry; 2003 Dec; 42(47):13869-78. PubMed ID: 14636054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of statistical measures for analyzing RNA secondary structures.
    Dai Q; Wang TM
    J Comput Chem; 2008 Jun; 29(8):1292-305. PubMed ID: 18172840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new hydrogen-bonding potential for the design of protein-RNA interactions predicts specific contacts and discriminates decoys.
    Chen Y; Kortemme T; Robertson T; Baker D; Varani G
    Nucleic Acids Res; 2004; 32(17):5147-62. PubMed ID: 15459285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional structures of RNA obtained by means of knowledge-based interaction potentials.
    Taxilaga-Zetina O; Pliego-Pastrana P; Carbajal-Tinoco MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041914. PubMed ID: 20481760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches.
    Purzycka KJ; Popenda M; Szachniuk M; Antczak M; Lukasiak P; Blazewicz J; Adamiak RW
    Methods Enzymol; 2015; 553():3-34. PubMed ID: 25726459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Torsion angle dynamics for NMR structure calculation with the new program DYANA.
    Güntert P; Mumenthaler C; Wüthrich K
    J Mol Biol; 1997 Oct; 273(1):283-98. PubMed ID: 9367762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between amino acid sequence and backbone torsion angle preferences.
    Keskin O; Yuret D; Gursoy A; Turkay M; Erman B
    Proteins; 2004 Jun; 55(4):992-8. PubMed ID: 15146495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.