These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25712096)

  • 1. Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity.
    Yates LA; Durrant BP; Fleurdépine S; Harlos K; Norbury CJ; Gilbert RJ
    Nucleic Acids Res; 2015 Mar; 43(5):2968-79. PubMed ID: 25712096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the activity of a cytoplasmic RNA terminal uridylyl transferase.
    Yates LA; Fleurdépine S; Rissland OS; De Colibus L; Harlos K; Norbury CJ; Gilbert RJC
    Nat Struct Mol Biol; 2012 Aug; 19(8):782-787. PubMed ID: 22751018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1).
    Yates LA; Durrant BP; Barber M; Harlos K; Fleurdépine S; Norbury CJ; Gilbert RJ
    Acta Crystallogr F Struct Biol Commun; 2015 Mar; 71(Pt 3):346-53. PubMed ID: 25760713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure.
    Munoz-Tello P; Gabus C; Thore S
    Nucleic Acids Res; 2014 Mar; 42(5):3372-80. PubMed ID: 24322298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA surveillance by uridylation-dependent RNA decay in Schizosaccharomyces pombe.
    Chung CZ; Jaramillo JE; Ellis MJ; Bour DYN; Seidl LE; Jo DHS; Turk MA; Mann MR; Bi Y; Haniford DB; Duennwald ML; Heinemann IU
    Nucleic Acids Res; 2019 Apr; 47(6):3045-3057. PubMed ID: 30715470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity.
    Lunde BM; Magler I; Meinhart A
    Nucleic Acids Res; 2012 Oct; 40(19):9815-24. PubMed ID: 22885303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase.
    Lapointe CP; Wickens M
    J Biol Chem; 2013 Jul; 288(28):20723-33. PubMed ID: 23709223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional implications from the Cid1 poly(U) polymerase crystal structure.
    Munoz-Tello P; Gabus C; Thore S
    Structure; 2012 Jun; 20(6):977-86. PubMed ID: 22608966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cid1 poly(U) polymerase.
    Rissland OS; Norbury CJ
    Biochim Biophys Acta; 2008 Apr; 1779(4):286-94. PubMed ID: 18371314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of modified nucleotide polymers by the poly(U) polymerase Cid1: application to direct RNA sequencing on nanopores.
    Vo JM; Mulroney L; Quick-Cleveland J; Jain M; Akeson M; Ares M
    RNA; 2021 Dec; 27(12):1497-1511. PubMed ID: 34446532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient RNA polyuridylation by noncanonical poly(A) polymerases.
    Rissland OS; Mikulasova A; Norbury CJ
    Mol Cell Biol; 2007 May; 27(10):3612-24. PubMed ID: 17353264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual role of the RNA substrate in selectivity and catalysis by terminal uridylyl transferases.
    Stagno J; Aphasizheva I; Aphasizhev R; Luecke H
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14634-9. PubMed ID: 17785418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for acceptor RNA substrate selectivity of the 3' terminal uridylyl transferase Tailor.
    Kroupova A; Ivascu A; Reimão-Pinto MM; Ameres SL; Jinek M
    Nucleic Acids Res; 2019 Jan; 47(2):1030-1042. PubMed ID: 30462292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cid1 family of non-canonical poly(A) polymerases.
    Stevenson AL; Norbury CJ
    Yeast; 2006 Oct; 23(13):991-1000. PubMed ID: 17072891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Arabidopsis terminal uridylyl transferase URT1.
    Zhu L; Hu Q; Cheng L; Jiang Y; Lv M; Liu Y; Li F; Shi Y; Gong Q
    Biochem Biophys Res Commun; 2020 Apr; 524(2):490-496. PubMed ID: 32008746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responsive fluorescent nucleotides serve as efficient substrates to probe terminal uridylyl transferase.
    George JT; Srivatsan SG
    Chem Commun (Camb); 2020 Oct; 56(82):12319-12322. PubMed ID: 32939524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into a unique preference for 3' terminal guanine of mirtron in Drosophila TUTase tailor.
    Cheng L; Li F; Jiang Y; Yu H; Xie C; Shi Y; Gong Q
    Nucleic Acids Res; 2019 Jan; 47(1):495-508. PubMed ID: 30407553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-specific ribonucleotidyl transferases.
    Martin G; Keller W
    RNA; 2007 Nov; 13(11):1834-49. PubMed ID: 17872511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes.
    Doamekpor SK; Sanchez AM; Schwer B; Shuman S; Lima CD
    Genes Dev; 2014 Jun; 28(12):1323-36. PubMed ID: 24939935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple terminal uridylyltransferases of trypanosomes.
    Aphasizhev R; Aphasizheva I; Simpson L
    FEBS Lett; 2004 Aug; 572(1-3):15-8. PubMed ID: 15304317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.