These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25712330)

  • 1. In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds.
    Haase T; Krost A; Sauter T; Kratz K; Peter J; Kamann S; Jung F; Lendlein A; Zohlnhöfer D; Rüder C
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1034-1044. PubMed ID: 25712330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction.
    Cao H; McHugh K; Chew SY; Anderson JM
    J Biomed Mater Res A; 2010 Jun; 93(3):1151-9. PubMed ID: 19768795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo biocompatibility study of degradable homo- versus multiblock copolymers and their (micro)structure compared to an established biomaterial.
    Haase T; Klopfleisch R; Krost A; Sauter T; Kratz K; Peter J; Jung F; Lendlein A; Zohlnhöfer D; Rüder C
    Clin Hemorheol Microcirc; 2020; 75(2):163-176. PubMed ID: 31929151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis.
    Castellano D; Sanchis A; Blanes M; Pérez Del Caz MD; Ruiz-Saurí A; Piquer-Gil M; Pelacho B; Marco B; Garcia N; Ontoria-Oviedo I; Cambra V; Prosper F; Sepúlveda P
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e983-e994. PubMed ID: 28111928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration.
    Goonoo N; Fahmi A; Jonas U; Gimié F; Arsa IA; Bénard S; Schönherr H; Bhaw-Luximon A
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5834-5850. PubMed ID: 30640432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering.
    Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F
    J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple surface coating of electrospun poly-L-lactic acid scaffolds to induce angiogenesis.
    Gigliobianco G; Chong CK; MacNeil S
    J Biomater Appl; 2015 Jul; 30(1):50-60. PubMed ID: 25652887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep.
    Uebersax L; Apfel T; Nuss KM; Vogt R; Kim HY; Meinel L; Kaplan DL; Auer JA; Merkle HP; von Rechenberg B
    Eur J Pharm Biopharm; 2013 Sep; 85(1):107-18. PubMed ID: 23958322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of poly(ether imide) films with early immune mechanisms.
    Roch T; Schulz C; Jung F; Ma N; Lendlein A
    Clin Hemorheol Microcirc; 2014; 57(2):203-12. PubMed ID: 24584324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascularization of wide pore agarose-gelatin cryogel scaffolds implanted subcutaneously in diabetic and non-diabetic mice.
    Bloch K; Vanichkin A; Damshkaln LG; Lozinsky VI; Vardi P
    Acta Biomater; 2010 Mar; 6(3):1200-5. PubMed ID: 19703598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels.
    He S; Xia T; Wang H; Wei L; Luo X; Li X
    Acta Biomater; 2012 Jul; 8(7):2659-69. PubMed ID: 22484697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a poly(ether imide) coating to improve corrosion resistance and biocompatibility of magnesium (Mg) implant for orthopedic applications.
    Kim SB; Jo JH; Lee SM; Kim HE; Shin KH; Koh YH
    J Biomed Mater Res A; 2013 Jun; 101(6):1708-15. PubMed ID: 23184807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation.
    Ji W; Yang F; Seyednejad H; Chen Z; Hennink WE; Anderson JM; van den Beucken JJ; Jansen JA
    Biomaterials; 2012 Oct; 33(28):6604-14. PubMed ID: 22770568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and biocompatibility of a fibrous glassy scaffold.
    Gabbai-Armelin PR; Souza MT; Kido HW; Tim CR; Bossini PS; Fernandes KR; Magri AM; Parizotto NA; Fernandes KP; Mesquita-Ferrari RA; Ribeiro DA; Zanotto ED; Peitl O; Renno AC
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1141-1151. PubMed ID: 25712803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo.
    Pu J; Yuan F; Li S; Komvopoulos K
    Acta Biomater; 2015 Feb; 13():131-41. PubMed ID: 25463495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells.
    Tavassol F; Schumann P; Lindhorst D; Sinikovic B; Voss A; von See C; Kampmann A; Bormann KH; Carvalho C; Mülhaupt R; Harder Y; Laschke MW; Menger MD; Gellrich NC; Rücker M
    Tissue Eng Part A; 2010 Jul; 16(7):2265-79. PubMed ID: 20184434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
    Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering.
    Bloise N; Berardi E; Gualandi C; Zaghi E; Gigli M; Duelen R; Ceccarelli G; Cortesi EE; Costamagna D; Bruni G; Lotti N; Focarete ML; Visai L; Sampaolesi M
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30336625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.