These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25712330)

  • 21. Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering.
    Bloise N; Berardi E; Gualandi C; Zaghi E; Gigli M; Duelen R; Ceccarelli G; Cortesi EE; Costamagna D; Bruni G; Lotti N; Focarete ML; Visai L; Sampaolesi M
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30336625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vascularization Potential of Electrospun Poly(L-Lactide-co-Caprolactone) Scaffold: The Impact for Tissue Engineering.
    Jundziłł A; Pokrywczyńska M; Adamowicz J; Kowalczyk T; Nowacki M; Bodnar M; Marszałek A; Frontczak-Baniewicz M; Mikułowski G; Kloskowski T; Gatherwright J; Drewa T
    Med Sci Monit; 2017 Mar; 23():1540-1551. PubMed ID: 28360409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of VEGF loading on scaffold-confined vascularization.
    Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymeric electrospun scaffolds: neuregulin encapsulation and biocompatibility studies in a model of myocardial ischemia.
    Simón-Yarza T; Rossi A; Heffels KH; Prósper F; Groll J; Blanco-Prieto MJ
    Tissue Eng Part A; 2015 May; 21(9-10):1654-61. PubMed ID: 25707939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface modification of electrospun poly-(l-lactic) acid scaffolds by reactive magnetron sputtering.
    Bolbasov EN; Maryin PV; Stankevich KS; Kozelskaya AI; Shesterikov EV; Khodyrevskaya YI; Nasonova MV; Shishkova DK; Kudryavtseva YA; Anissimov YG; Tverdokhlebov SI
    Colloids Surf B Biointerfaces; 2018 Feb; 162():43-51. PubMed ID: 29149727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning.
    Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG
    Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds.
    Rücker M; Laschke MW; Junker D; Carvalho C; Tavassol F; Mülhaupt R; Gellrich NC; Menger MD
    J Biomed Mater Res A; 2008 Sep; 86(4):1002-11. PubMed ID: 18067166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting.
    Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR
    Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response.
    Jiang J; Li Z; Wang H; Wang Y; Carlson MA; Teusink MJ; MacEwan MR; Gu L; Xie J
    Adv Healthc Mater; 2016 Dec; 5(23):2993-3003. PubMed ID: 27709840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes.
    Schneider T; Kohl B; Sauter T; Kratz K; Lendlein A; Ertel W; Schulze-Tanzil G
    Clin Hemorheol Microcirc; 2012; 52(2-4):325-36. PubMed ID: 22975946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The in vitro and in vivo biocompatibility evaluation of heparin-poly(ε-caprolactone) conjugate for vascular tissue engineering scaffolds.
    Ye L; Wu X; Duan HY; Geng X; Chen B; Gu YQ; Zhang AY; Zhang J; Feng ZG
    J Biomed Mater Res A; 2012 Dec; 100(12):3251-8. PubMed ID: 22733560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of inflammatory reaction of poly(d,l-lactic-co-glycolic Acid) using demineralized bone particles.
    Yoon SJ; Kim SH; Ha HJ; Ko YK; So JW; Kim MS; Yang YI; Khang G; Rhee JM; Lee HB
    Tissue Eng Part A; 2008 Apr; 14(4):539-47. PubMed ID: 18352826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library.
    Metter RB; Ifkovits JL; Hou K; Vincent L; Hsu B; Wang L; Mauck RL; Burdick JA
    Acta Biomater; 2010 Apr; 6(4):1219-26. PubMed ID: 19853066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering.
    Cai YZ; Zhang GR; Wang LL; Jiang YZ; Ouyang HW; Zou XH
    J Biomed Mater Res A; 2012 May; 100(5):1187-94. PubMed ID: 22345081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.
    Xu H; Li H; Ke Q; Chang J
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8706-18. PubMed ID: 25826222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sugar-cane bagasse cellulose-based scaffolds promote multi-cellular interactions, angiogenesis and reduce inflammation for skin tissue regeneration.
    Ramphul H; Gimié F; Andries J; Jhurry D; Bhaw-Luximon A
    Int J Biol Macromol; 2020 Aug; 157():296-310. PubMed ID: 32339588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization.
    Thorson TJ; Gurlin RE; Botvinick EL; Mohraz A
    Acta Biomater; 2019 Aug; 94():173-182. PubMed ID: 31233892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.
    Sudwilai T; Ng JJ; Boonkrai C; Israsena N; Chuangchote S; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(12):1240-52. PubMed ID: 24933469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.