These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25712403)

  • 1. Influence of chlorine coordination number on the catalytic mechanism of ruthenium chloride catalysts in the acetylene hydrochlorination reaction: a DFT study.
    Han Y; Sun M; Li W; Zhang J
    Phys Chem Chem Phys; 2015 Mar; 17(12):7720-30. PubMed ID: 25712403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysis of the acetylene hydrochlorination reaction by Si-doped Au clusters: a DFT study.
    Zhao Y; Zhao F; Kang L
    J Mol Model; 2018 Feb; 24(3):61. PubMed ID: 29464333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Atom Ruthenium Catalytic Sites for Acetylene Hydrochlorination.
    Zhang H; Zhang T; Jia Y; Zhang J; Han Y
    J Phys Chem Lett; 2021 Aug; 12(30):7350-7356. PubMed ID: 34324364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular design of ionic liquids as novel non-metal catalysts for the acetylene hydrochlorination reaction.
    Nian Y; Zhang J; Li X; Wang Y; Li W; Kolubah PD; Han Y
    Phys Chem Chem Phys; 2019 Apr; 21(14):7635-7644. PubMed ID: 30911749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of choline chloride modified USY zeolites for palladium-catalyzed acetylene hydrochlorination.
    Long Z; Wang L; Yan H; Si J; Zhang M; Wang J; Zhao L; Yang C; Wu R
    RSC Adv; 2022 Mar; 12(16):9923-9932. PubMed ID: 35424945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of various g-C
    Wu Y; Li F; Xue J; Lv Z
    Turk J Chem; 2020; 44(2):393-408. PubMed ID: 33488165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable Synthesis of Bimetallic Single Atom Gold-Based Catalysts with Enhanced Durability in Acetylene Hydrochlorination.
    Kaiser SK; Clark AH; Cartocci L; Krumeich F; Pérez-Ramírez J
    Small; 2021 Apr; 17(16):e2004599. PubMed ID: 33432775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination.
    Kaiser SK; Fako E; Surin I; Krumeich F; Kondratenko VA; Kondratenko EV; Clark AH; López N; Pérez-Ramírez J
    Nat Nanotechnol; 2022 Jun; 17(6):606-612. PubMed ID: 35484211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active centre and reactivity descriptor of a green single component imidazole catalyst for acetylene hydrochlorination.
    Zhao C; Qiao X; Yi Z; Guan Q; Li W
    Phys Chem Chem Phys; 2020 Feb; 22(5):2849-2857. PubMed ID: 31967628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT functional benchmarking on the energy splitting of chromium spin states and mechanistic study of acetylene cyclotrimerization over the Phillips Cr(II)/silica catalyst.
    Liu Z; Cheng R; He X; Wu X; Liu B
    J Phys Chem A; 2012 Jul; 116(28):7538-49. PubMed ID: 22697502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination.
    Kaiser SK; Lin R; Mitchell S; Fako E; Krumeich F; Hauert R; Safonova OV; Kondratenko VA; Kondratenko EV; Collins SM; Midgley PA; López N; Pérez-Ramírez J
    Chem Sci; 2019 Jan; 10(2):359-369. PubMed ID: 30746085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DFT + U study of acetylene selective hydrogenation over anatase supported PdaAgb (a + b = 4) cluster.
    Meng LD; Wang GC
    Phys Chem Chem Phys; 2014 Sep; 16(33):17541-50. PubMed ID: 25026216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-doped porous carbon from biomass with superior catalytic performance for acetylene hydrochlorination.
    Shen Z; Liu Y; Han Y; Qin Y; Li J; Xing P; Jiang B
    RSC Adv; 2020 Apr; 10(25):14556-14569. PubMed ID: 35497155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preserved in a Shell: High-Performance Graphene-Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination.
    Kaiser SK; Lin R; Krumeich F; Safonova OV; Pérez-Ramírez J
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12297-12304. PubMed ID: 31278846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of X ligand effect on catalytic activity of complexes RuHX(diamine)(PPh(3))(2) (X = NCMe, CO, Cl, OMe, OPh, CCMe and H) in H(2)-hydrogenation of ketones.
    Chen Z; Chen Y; Tang Y; Lei M
    Dalton Trans; 2010 Feb; 39(8):2036-43. PubMed ID: 20148222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylene hydrochlorination over tin nitrogen based catalysts: effect of nitrogen carbon-dots as nitrogen precursor.
    Wu Y; Li F; Li Q; Li S; Zhao G; Sun X; Liu P; He G; Han Y; Cheng L; Luo S
    Turk J Chem; 2021; 45(5):1463-1475. PubMed ID: 34849060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tin-sulfur based catalysts for acetylene hydrochlorination.
    Wu Y; Li F; Luo X; Tian G; Feng Y; Han Y; Wang L; Chu S; Cao Y; Cao K; Hu X; Shi X; Li S; He G; Li Q
    Turk J Chem; 2021; 45(3):566-576. PubMed ID: 34385852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene.
    Li X; Pan X; Yu L; Ren P; Wu X; Sun L; Jiao F; Bao X
    Nat Commun; 2014 Apr; 5():3688. PubMed ID: 24751500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sn(II)/PN@AC catalysts: synthesis, physical-chemical characterization, and applications.
    Wu Y; Li F; Li Q; Han Y; Wang L; Ma W; Xv F
    Turk J Chem; 2021; 45(5):1476-1487. PubMed ID: 34849061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.