These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25712492)
21. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Qiang Y; Artoni P; Seo KJ; Culaclii S; Hogan V; Zhao X; Zhong Y; Han X; Wang PM; Lo YK; Li Y; Patel HA; Huang Y; Sambangi A; Chu JSV; Liu W; Fagiolini M; Fang H Sci Adv; 2018 Sep; 4(9):eaat0626. PubMed ID: 30191176 [TBL] [Abstract][Full Text] [Related]
22. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures. Nam Y; Chang JC; Wheeler BC; Brewer GJ IEEE Trans Biomed Eng; 2004 Jan; 51(1):158-65. PubMed ID: 14723505 [TBL] [Abstract][Full Text] [Related]
23. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Kim JH; Kang G; Nam Y; Choi YK Nanotechnology; 2010 Feb; 21(8):85303. PubMed ID: 20101076 [TBL] [Abstract][Full Text] [Related]
24. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation. Asghar SA; Mahadevappa M IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869 [TBL] [Abstract][Full Text] [Related]
25. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures. Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792 [TBL] [Abstract][Full Text] [Related]
26. Graphene neural interfaces for artifact free optogenetics. Hongming Lyu ; Xin Liu ; Rogers N; Gilja V; Kuzum D Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4204-4207. PubMed ID: 28269210 [TBL] [Abstract][Full Text] [Related]
27. Photopatterning of self-assembled poly (ethylene) glycol monolayer for neuronal network fabrication. Cheng J; Zhu G; Wu L; Du X; Zhang H; Wolfrum B; Jin Q; Zhao J; Offenhäusser A; Xu Y J Neurosci Methods; 2013 Mar; 213(2):196-203. PubMed ID: 23291086 [TBL] [Abstract][Full Text] [Related]
28. Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Tian HC; Liu JQ; Wei DX; Kang XY; Zhang C; Du JC; Yang B; Chen X; Zhu HY; Nuli YN; Yang CS Biomaterials; 2014 Feb; 35(7):2120-9. PubMed ID: 24333027 [TBL] [Abstract][Full Text] [Related]
29. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis. Bae SH; Che JH; Seo JM; Jeong J; Kim ET; Lee SW; Koo KI; Suaning GJ; Lovell NH; Cho DI; Kim SJ; Chung H Invest Ophthalmol Vis Sci; 2012 May; 53(6):2653-7. PubMed ID: 22427592 [TBL] [Abstract][Full Text] [Related]
30. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. Prasad A; Sanchez JC J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134 [TBL] [Abstract][Full Text] [Related]
31. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording. Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479 [TBL] [Abstract][Full Text] [Related]
32. Gold nanostructure microelectrode arrays for in vitro recording and stimulation from neuronal networks. Koklu A; Atmaramani R; Hammack A; Beskok A; Pancrazio JJ; Gnade BE; Black BJ Nanotechnology; 2019 Jun; 30(23):235501. PubMed ID: 30776783 [TBL] [Abstract][Full Text] [Related]
34. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording. Pan AI; Lin MH; Chung HW; Chen H; Yeh SR; Chuang YJ; Chang YC; Yew TR Analyst; 2016 Jan; 141(1):279-84. PubMed ID: 26588673 [TBL] [Abstract][Full Text] [Related]
35. CMOS microelectrode array for the monitoring of electrogenic cells. Heer F; Franks W; Blau A; Taschini S; Ziegler C; Hierlemann A; Baltes H Biosens Bioelectron; 2004 Sep; 20(2):358-66. PubMed ID: 15308242 [TBL] [Abstract][Full Text] [Related]
36. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. Heim M; Yvert B; Kuhn A J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264 [TBL] [Abstract][Full Text] [Related]
37. Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Qi D; Liu Z; Liu Y; Jiang Y; Leow WR; Pal M; Pan S; Yang H; Wang Y; Zhang X; Yu J; Li B; Yu Z; Wang W; Chen X Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28869690 [TBL] [Abstract][Full Text] [Related]
38. Versatile Flexible Graphene Multielectrode Arrays. Kireev D; Seyock S; Ernst M; Maybeck V; Wolfrum B; Offenhäusser A Biosensors (Basel); 2016 Dec; 7(1):. PubMed ID: 28025564 [TBL] [Abstract][Full Text] [Related]
39. Slow-Wave Recordings From Micro-Sized Neural Clusters Using Multiwell Type Microelectrode Arrays. Joo S; Nam Y IEEE Trans Biomed Eng; 2019 Feb; 66(2):403-410. PubMed ID: 29993399 [TBL] [Abstract][Full Text] [Related]
40. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells. Abdurhman AA; Zhang Y; Zhang G; Wang S Anal Bioanal Chem; 2015 Oct; 407(26):8129-36. PubMed ID: 26359235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]