BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25712527)

  • 1. Biophysical characterization of interactions between the C-termini of peripheral nerve claudins and the PDZ₁ domain of zonula occludens.
    Wu J; Peng D; Zhang Y; Lu Z; Voehler M; Sanders CR; Li J
    Biochem Biophys Res Commun; 2015 Mar; 459(1):87-93. PubMed ID: 25712527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis of a Key Factor Regulating the Affinity between the Zonula Occludens First PDZ Domain and Claudins.
    Nomme J; Antanasijevic A; Caffrey M; Van Itallie CM; Anderson JM; Fanning AS; Lavie A
    J Biol Chem; 2015 Jul; 290(27):16595-606. PubMed ID: 26023235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins.
    Itoh M; Furuse M; Morita K; Kubota K; Saitou M; Tsukita S
    J Cell Biol; 1999 Dec; 147(6):1351-63. PubMed ID: 10601346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tight junction formation by a claudin mutant lacking the COOH-terminal PDZ domain-binding motif.
    Fujiwara S; Nguyen TP; Furuse K; Fukazawa Y; Otani T; Furuse M
    Ann N Y Acad Sci; 2022 Oct; 1516(1):85-94. PubMed ID: 35945631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Overlap of Claudin- and Phosphatidylinositol Phosphate-Binding Sites on the First PDZ Domain of Zonula Occludens 1 Studied by NMR.
    Hiroaki H; Satomura K; Goda N; Nakakura Y; Hiranuma M; Tenno T; Hamada D; Ikegami T
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30261614
    [No Abstract]   [Full Text] [Related]  

  • 6. Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation.
    Piontek A; Rossa J; Protze J; Wolburg H; Hempel C; Günzel D; Krause G; Piontek J
    Ann N Y Acad Sci; 2017 Jun; 1397(1):143-156. PubMed ID: 28415153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain-swapped dimerization of the second PDZ domain of ZO2 may provide a structural basis for the polymerization of claudins.
    Wu J; Yang Y; Zhang J; Ji P; Du W; Jiang P; Xie D; Huang H; Wu M; Zhang G; Wu J; Shi Y
    J Biol Chem; 2007 Dec; 282(49):35988-99. PubMed ID: 17897942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions.
    Beutel O; Maraspini R; Pombo-García K; Martin-Lemaitre C; Honigmann A
    Cell; 2019 Oct; 179(4):923-936.e11. PubMed ID: 31675499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bile duct ligation in the rat causes upregulation of ZO-2 and decreased colocalization of claudins with ZO-1 and occludin.
    Maly IP; Landmann L
    Histochem Cell Biol; 2008 Mar; 129(3):289-99. PubMed ID: 18197414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruffles and spikes: Control of tight junction morphology and permeability by claudins.
    Lynn KS; Peterson RJ; Koval M
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183339. PubMed ID: 32389670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells.
    Poliak S; Matlis S; Ullmer C; Scherer SS; Peles E
    J Cell Biol; 2002 Oct; 159(2):361-72. PubMed ID: 12403818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorting nexin 27 (SNX27) associates with zonula occludens-2 (ZO-2) and modulates the epithelial tight junction.
    Zimmerman SP; Hueschen CL; Malide D; Milgram SL; Playford MP
    Biochem J; 2013 Oct; 455(1):95-106. PubMed ID: 23826934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1.
    Van Itallie CM; Tietgens AJ; Anderson JM
    Mol Biol Cell; 2017 Feb; 28(4):524-534. PubMed ID: 27974639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions.
    Schlingmann B; Overgaard CE; Molina SA; Lynn KS; Mitchell LA; Dorsainvil White S; Mattheyses AL; Guidot DM; Capaldo CT; Koval M
    Nat Commun; 2016 Jul; 7():12276. PubMed ID: 27452368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H, 13C, and 15N resonance assignment of the first PDZ domain of mouse ZO-1.
    Umetsu Y; Goda N; Taniguchi R; Satomura K; Ikegami T; Furuse M; Hiroaki H
    Biomol NMR Assign; 2011 Oct; 5(2):207-10. PubMed ID: 21431884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight junction proteins in human Schwann cell autotypic junctions.
    Alanne MH; Pummi K; Heape AM; Grènman R; Peltonen J; Peltonen S
    J Histochem Cytochem; 2009 Jun; 57(6):523-9. PubMed ID: 19153196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of claudin species-specific dynamics in reconstitution and remodeling of the zonula occludens.
    Yamazaki Y; Tokumasu R; Kimura H; Tsukita S
    Mol Biol Cell; 2011 May; 22(9):1495-504. PubMed ID: 21372174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Canonical and Non-Canonical Localization of Tight Junction Proteins during Early Murine Cranial Development.
    Mak S; Hammes A
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular Distribution Pattern of tjp1 (ZO-1) in Xenopus laevis Oocytes Heterologously Expressing Claudins.
    Brunner N; Stein L; Amasheh S
    J Membr Biol; 2023 Feb; 256(1):51-61. PubMed ID: 35737002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting claudin-overexpressing thyroid and lung cancer by modified Clostridium perfringens enterotoxin.
    Piontek A; Eichner M; Zwanziger D; Beier LS; Protze J; Walther W; Theurer S; Schmid KW; Führer-Sakel D; Piontek J; Krause G
    Mol Oncol; 2020 Feb; 14(2):261-276. PubMed ID: 31825142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.