BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 25712550)

  • 1. Parkin structure and function.
    Seirafi M; Kozlov G; Gehring K
    FEBS J; 2015 Jun; 282(11):2076-88. PubMed ID: 25712550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond.
    Bingol B; Sheng M
    Free Radic Biol Med; 2016 Nov; 100():210-222. PubMed ID: 27094585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PINK1/Parkin-mediated mitophagy in mammalian cells.
    Eiyama A; Okamoto K
    Curr Opin Cell Biol; 2015 Apr; 33():95-101. PubMed ID: 25697963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.
    Yamano K; Matsuda N; Tanaka K
    EMBO Rep; 2016 Mar; 17(3):300-16. PubMed ID: 26882551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade.
    Matsuda N
    J Biochem; 2016 Apr; 159(4):379-85. PubMed ID: 26839319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.
    Caulfield TR; Fiesel FC; Moussaud-Lamodière EL; Dourado DF; Flores SC; Springer W
    PLoS Comput Biol; 2014 Nov; 10(11):e1003935. PubMed ID: 25375667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy.
    Nguyen TN; Padman BS; Lazarou M
    Trends Cell Biol; 2016 Oct; 26(10):733-744. PubMed ID: 27291334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance.
    Buhlman L; Damiano M; Bertolin G; Ferrando-Miguel R; Lombès A; Brice A; Corti O
    Biochim Biophys Acta; 2014 Sep; 1843(9):2012-26. PubMed ID: 24878071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial kinase PINK1: functions beyond mitophagy.
    Voigt A; Berlemann LA; Winklhofer KF
    J Neurochem; 2016 Oct; 139 Suppl 1():232-239. PubMed ID: 27251035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation by mitophagy.
    Hattori N; Saiki S; Imai Y
    Int J Biochem Cell Biol; 2014 Aug; 53():147-50. PubMed ID: 24842103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10.
    Bertolin G; Jacoupy M; Traver S; Ferrando-Miguel R; Saint Georges T; Grenier K; Ardila-Osorio H; Muriel MP; Takahashi H; Lees AJ; Gautier C; Guedin D; Coge F; Fon EA; Brice A; Corti O
    Cell Death Differ; 2015 Oct; 22(10):1563-76. PubMed ID: 25591737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PINK1-Parkin axis: An Overview.
    Tanaka K
    Neurosci Res; 2020 Oct; 159():9-15. PubMed ID: 31982458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy.
    Ordureau A; Heo JM; Duda DM; Paulo JA; Olszewski JL; Yanishevski D; Rinehart J; Schulman BA; Harper JW
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6637-42. PubMed ID: 25969509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy.
    Geisler S; Vollmer S; Golombek S; Kahle PJ
    J Cell Sci; 2014 Aug; 127(Pt 15):3280-93. PubMed ID: 24906799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity.
    Ham SJ; Lee SY; Song S; Chung JR; Choi S; Chung J
    J Biol Chem; 2016 Jan; 291(4):1803-1816. PubMed ID: 26631732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PINK1/Parkin pathway: a mitochondrial quality control system?
    Whitworth AJ; Pallanck LJ
    J Bioenerg Biomembr; 2009 Dec; 41(6):499-503. PubMed ID: 19967438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the E3 ubiquitin ligase Parkin.
    Caulfield TR; Fiesel FC; Springer W
    Biochem Soc Trans; 2015 Apr; 43(2):269-74. PubMed ID: 25849928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance.
    Bertolin G; Ferrando-Miguel R; Jacoupy M; Traver S; Grenier K; Greene AW; Dauphin A; Waharte F; Bayot A; Salamero J; Lombès A; Bulteau AL; Fon EA; Brice A; Corti O
    Autophagy; 2013 Nov; 9(11):1801-17. PubMed ID: 24149440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hidden phenotypes of PINK1/Parkin knockout mice.
    Paul S; Pickrell AM
    Biochim Biophys Acta Gen Subj; 2021 Jun; 1865(6):129871. PubMed ID: 33571581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.