These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 25713141)

  • 1. Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.
    Tomizuka J; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Apr; 290(15):9399-411. PubMed ID: 25713141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low activation and fast inactivation of transducin in carp cones.
    Tachibanaki S; Yonetsu S; Fukaya S; Koshitani Y; Kawamura S
    J Biol Chem; 2012 Nov; 287(49):41186-94. PubMed ID: 23045532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes.
    Yamaoka H; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Oct; 290(40):24381-90. PubMed ID: 26286749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones.
    Koshitani Y; Tachibanaki S; Kawamura S
    J Biol Chem; 2014 Jan; 289(5):2651-7. PubMed ID: 24344136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
    Tachibanaki S; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14044-9. PubMed ID: 11707584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
    Sato S; Kefalov VJ
    J Physiol; 2016 Nov; 594(22):6753-6765. PubMed ID: 27385534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.
    Tachibanaki S; Arinobu D; Shimauchi-Matsukawa Y; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9329-34. PubMed ID: 15958532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A visual pigment expressed in both rod and cone photoreceptors.
    Ma J; Znoiko S; Othersen KL; Ryan JC; Das J; Isayama T; Kono M; Oprian DD; Corson DW; Cornwall MC; Cameron DA; Harosi FI; Makino CL; Crouch RK
    Neuron; 2001 Nov; 32(3):451-61. PubMed ID: 11709156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments.
    Kojima K; Imamoto Y; Maeda R; Yamashita T; Shichida Y
    J Biol Chem; 2014 Feb; 289(8):5061-73. PubMed ID: 24375403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.
    de Busserolles F; Cortesi F; Helvik JV; Davies WIL; Templin RM; Sullivan RKP; Michell CT; Mountford JK; Collin SP; Irigoien X; Kaartvedt S; Marshall J
    Sci Adv; 2017 Nov; 3(11):eaao4709. PubMed ID: 29134201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells.
    Coleman JE; Semple-Rowland SL
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):12-6. PubMed ID: 15623748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of differentially expressed genes in carp rods and cones.
    Shimauchi-Matsukawa Y; Aman Y; Tachibanaki S; Kawamura S
    Mol Vis; 2008 Feb; 14():358-69. PubMed ID: 18334952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the pharmacological activation of visual opsins.
    Isayama T; Chen Y; Kono M; Degrip WJ; Ma JX; Crouch RK; Makino CL
    Vis Neurosci; 2006; 23(6):899-908. PubMed ID: 17266782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms characterizing cone photoresponses.
    Tachibanaki S; Shimauchi-Matsukawa Y; Arinobu D; Kawamura S
    Photochem Photobiol; 2007; 83(1):19-26. PubMed ID: 16706600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral tuning by selective chromophore uptake in rods and cones of eight populations of nine-spined stickleback (Pungitius pungitius).
    Saarinen P; Pahlberg J; Herczeg G; Viljanen M; Karjalainen M; Shikano T; Merilä J; Donner K
    J Exp Biol; 2012 Aug; 215(Pt 16):2760-73. PubMed ID: 22837448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cone-like morphological, molecular, and electrophysiological features of the photoreceptors of the Nrl knockout mouse.
    Daniele LL; Lillo C; Lyubarsky AL; Nikonov SS; Philp N; Mears AJ; Swaroop A; Williams DS; Pugh EN
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2156-67. PubMed ID: 15914637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina.
    Sherry DM; Bui DD; Degrip WJ
    Vis Neurosci; 1998; 15(6):1175-87. PubMed ID: 9839981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.