These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25713346)

  • 1. On the principle of ion selectivity in Na+/H+-coupled membrane proteins: experimental and theoretical studies of an ATP synthase rotor.
    Leone V; Pogoryelov D; Meier T; Faraldo-Gómez JD
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):E1057-66. PubMed ID: 25713346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotors.
    Krah A; Pogoryelov D; Langer JD; Bond PJ; Meier T; Faraldo-Gómez JD
    Biochim Biophys Acta; 2010; 1797(6-7):763-72. PubMed ID: 20416273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
    Dimroth P; Cook GM
    Adv Microb Physiol; 2004; 49():175-218. PubMed ID: 15518831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new type of Na(+)-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif.
    Schulz S; Iglesias-Cans M; Krah A; Yildiz O; Leone V; Matthies D; Cook GM; Faraldo-Gómez JD; Meier T
    PLoS Biol; 2013; 11(6):e1001596. PubMed ID: 23824040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases.
    Meier T; Krah A; Bond PJ; Pogoryelov D; Diederichs K; Faraldo-Gómez JD
    J Mol Biol; 2009 Aug; 391(2):498-507. PubMed ID: 19500592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for the coupling ion selectivity of F1F0 ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum.
    Kaim G; Wehrle F; Gerike U; Dimroth P
    Biochemistry; 1997 Jul; 36(30):9185-94. PubMed ID: 9230051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria.
    Dimroth P
    Bioessays; 1991 Sep; 13(9):463-8. PubMed ID: 1665692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.
    Harvey WR
    J Exp Biol; 2009 Jun; 212(Pt 11):1620-9. PubMed ID: 19448072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct proton binding sites in the ATP synthase family.
    von Ballmoos C; Dimroth P
    Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative proton binding mode in ATP synthases.
    von Ballmoos C
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):441-5. PubMed ID: 17965925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-driven flagellar motor of Vibrio.
    Yorimitsu T; Homma M
    Biochim Biophys Acta; 2001 May; 1505(1):82-93. PubMed ID: 11248191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.
    Allegretti M; Klusch N; Mills DJ; Vonck J; Kühlbrandt W; Davies KM
    Nature; 2015 May; 521(7551):237-40. PubMed ID: 25707805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+ transport by the A1AO-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes.
    Mayer F; Lim JK; Langer JD; Kang SG; Müller V
    J Biol Chem; 2015 Mar; 290(11):6994-7002. PubMed ID: 25593316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation.
    Schlegel K; Leone V; Faraldo-Gómez JD; Müller V
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):947-52. PubMed ID: 22219361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum.
    Ferguson SA; Keis S; Cook GM
    J Bacteriol; 2006 Jul; 188(14):5045-54. PubMed ID: 16816177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the question of hydronium binding to ATP-synthase membrane rotors.
    Leone V; Krah A; Faraldo-Gómez JD
    Biophys J; 2010 Oct; 99(7):L53-5. PubMed ID: 20923632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase.
    Vonck J; von Nidda TK; Meier T; Matthey U; Mills DJ; Kühlbrandt W; Dimroth P
    J Mol Biol; 2002 Aug; 321(2):307-16. PubMed ID: 12144787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical evaluation of the one- versus the two-channel model for the operation of the ATP synthase's F(o) motor.
    Dimroth P; Matthey U; Kaim G
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):506-13. PubMed ID: 11004469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The motor of the ATP synthase.
    Dimroth P; Kaim G; Matthey U
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):87-92. PubMed ID: 9693726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.