These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25713449)

  • 1. Influence of structural hierarchy on the fracture behaviour of tooth enamel.
    Yilmaz ED; Schneider GA; Swain MV
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and scale of the mechanics of mammalian dental enamel viewed from an evolutionary perspective.
    Lucas PW; Philip SM; Al-Qeoud D; Al-Draihim N; Saji S; van Casteren A
    Evol Dev; 2016; 18(1):54-61. PubMed ID: 26763592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of enamel anisotropy on the distribution of stress in a tooth.
    Spears IR; van Noort R; Crompton RH; Cardew GE; Howard IC
    J Dent Res; 1993 Nov; 72(11):1526-31. PubMed ID: 8227704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of crystal arrangement on the mechanical performance of enamel.
    An B; Wang R; Zhang D
    Acta Biomater; 2012 Oct; 8(10):3784-93. PubMed ID: 22743111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel.
    White SN; Luo W; Paine ML; Fong H; Sarikaya M; Snead ML
    J Dent Res; 2001 Jan; 80(1):321-6. PubMed ID: 11269723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical microcrack model for materials exemplified at enamel.
    Özcoban H; Yilmaz ED; Schneider GA
    Dent Mater; 2018 Jan; 34(1):69-77. PubMed ID: 29175159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy absorption characterization of human enamel using nanoindentation.
    He LH; Swain MV
    J Biomed Mater Res A; 2007 May; 81(2):484-92. PubMed ID: 17133444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-rotary fatigue of tooth-biomaterial interfaces.
    De Munck J; Braem M; Wevers M; Yoshida Y; Inoue S; Suzuki K; Lambrechts P; Van Meerbeek B
    Biomaterials; 2005 Apr; 26(10):1145-53. PubMed ID: 15451634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the elastic/plastic transition of human enamel by nanoindentation.
    Ang SF; Scholz T; Klocke A; Schneider GA
    Dent Mater; 2009 Nov; 25(11):1403-10. PubMed ID: 19647864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the systematic documentation of the structural characteristics of bovine enamel: A critic to the protein sheath concept.
    Yilmaz ED; Koldehoff J; Schneider GA
    Dent Mater; 2018 Oct; 34(10):1518-1530. PubMed ID: 29958680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the tooth microstructure on the shear bond strength of a dental composite.
    Panighi M; G'Sell C
    J Biomed Mater Res; 1993 Aug; 27(8):975-81. PubMed ID: 8408125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of property gradients on the mechanical behavior of human enamel.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2012 May; 9():63-72. PubMed ID: 22498284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of enamel crystallite orientation through an entire tooth crown studied using synchrotron X-ray diffraction.
    Simmons LM; Al-Jawad M; Kilcoyne SH; Wood DJ
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1():19-24. PubMed ID: 22243222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural integrity of enamel: experimental and modeling.
    Xie Z; Swain MV; Hoffman MJ
    J Dent Res; 2009 Jun; 88(6):529-33. PubMed ID: 19587157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of tooth enamel in great apes.
    Lee JJ; Morris D; Constantino PJ; Lucas PW; Smith TM; Lawn BR
    Acta Biomater; 2010 Dec; 6(12):4560-5. PubMed ID: 20656077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding nature's residual strain engineering at the human dentine-enamel junction interface.
    Sui T; Lunt AJG; Baimpas N; Sandholzer MA; Li T; Zeng K; Landini G; Korsunsky AM
    Acta Biomater; 2016 Mar; 32():256-263. PubMed ID: 26779888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromechanical characterization of prismless enamel in the tuatara, Sphenodon punctatus.
    Yilmaz ED; Bechtle S; Özcoban H; Kieser JA; Swain MV; Schneider GA
    J Mech Behav Biomed Mater; 2014 Nov; 39():210-7. PubMed ID: 25146675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance.
    Wilmers J; Bargmann S
    Acta Biomater; 2020 Apr; 107():1-24. PubMed ID: 32087326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Materials of Mastication: Material Science of the Humble Tooth.
    van Casteren A; Crofts SB
    Integr Comp Biol; 2019 Dec; 59(6):1681-1689. PubMed ID: 31318032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue crack propagation path across the dentinoenamel junction complex in human teeth.
    Dong XD; Ruse ND
    J Biomed Mater Res A; 2003 Jul; 66(1):103-9. PubMed ID: 12833436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.