These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 25713457)
1. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Mughrabi H Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457 [TBL] [Abstract][Full Text] [Related]
2. Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg⁻Gd⁻Y⁻Zr Alloy. He C; Wu Y; Peng L; Su N; Li X; Yang K; Liu Y; Yuan S; Tian R Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513615 [TBL] [Abstract][Full Text] [Related]
3. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks. Pineau A Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713451 [TBL] [Abstract][Full Text] [Related]
4. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis. Chai G; Zhou N Ultrasonics; 2013 Dec; 53(8):1406-11. PubMed ID: 23850182 [TBL] [Abstract][Full Text] [Related]
5. Fundamental mechanisms of fatigue and fracture. Christ HJ Stud Health Technol Inform; 2008; 133():56-67. PubMed ID: 18376013 [TBL] [Abstract][Full Text] [Related]
6. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194 [TBL] [Abstract][Full Text] [Related]
7. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. Fintová S; Kunz L J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295 [TBL] [Abstract][Full Text] [Related]
8. High Cycle Fatigue in the Transmission Electron Microscope. Bufford DC; Stauffer D; Mook WM; Syed Asif SA; Boyce BL; Hattar K Nano Lett; 2016 Aug; 16(8):4946-53. PubMed ID: 27351706 [TBL] [Abstract][Full Text] [Related]
9. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter. Amura M; Meo M; Amerini F J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336 [TBL] [Abstract][Full Text] [Related]
10. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain. Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738 [TBL] [Abstract][Full Text] [Related]
11. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale. Lavenstein S; Gu Y; Madisetti D; El-Awady JA Science; 2020 Oct; 370(6513):. PubMed ID: 33033185 [TBL] [Abstract][Full Text] [Related]
12. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel. Gołebiowski B; Swiatnicki WA; Gaspérini M J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation. Shiraiwa T; Briffod F; Enoki M Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226 [TBL] [Abstract][Full Text] [Related]
14. Study on Short Fatigue Crack Behaviour of LZ50 Steel Under Non-Proportional Loading. Yang B; Liao Z; Xiao S; Yang G; Zhu T; Zhang X Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936422 [TBL] [Abstract][Full Text] [Related]
15. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation. Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085 [TBL] [Abstract][Full Text] [Related]
16. Cyclic Deformation Induced Residual Stress Evolution and 3D Short Fatigue Crack Growth Investigated by Advanced Synchrotron Tomography Techniques. Dönges B; Syha M; Hüsecken AK; Pietsch U; Ludwig W; Krupp U; Christ HJ Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33810145 [TBL] [Abstract][Full Text] [Related]
17. Investigation of fatigue crack initiation facets in Ti-6Al-4V using focused ion beam milling and electron backscatter diffraction. Everaerts J; Verlinden B; Wevers M J Microsc; 2017 Jul; 267(1):57-69. PubMed ID: 28294326 [TBL] [Abstract][Full Text] [Related]
18. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions. Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029 [TBL] [Abstract][Full Text] [Related]
19. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography. Toda H Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i3-i4. PubMed ID: 25359829 [TBL] [Abstract][Full Text] [Related]
20. Characterization on Crack Initiation and Early Propagation Region of Nickel-Based Alloys in Very High Cycle Fatigue. Chen Z; Dong Z; Liu C; Dai Y; He C Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]