These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25713457)

  • 21. The effects of tubule orientation on fatigue crack growth in dentin.
    Arola DD; Rouland JA
    J Biomed Mater Res A; 2003 Oct; 67(1):78-86. PubMed ID: 14517864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclic compressive loading results in fatigue cracks in ultra high molecular weight polyethylene.
    Pruitt L; Koo J; Rimnac CM; Suresh S; Wright TM
    J Orthop Res; 1995 Jan; 13(1):143-6. PubMed ID: 7853097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of ultrasonic back-reflection intensity for predicting the onset of crack growth due to low-cycle fatigue in stainless steel under block loading.
    Islam MN; Arai Y; Araki W
    Ultrasonics; 2015 Feb; 56():354-60. PubMed ID: 25287974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites.
    Pohl PM; Kümmel F; Schunk C; Serrano-Munoz I; Markötter H; Göken M; Höppel HW
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short Fatigue-Crack Growth from Crack-like Defects under Completely Reversed Loading Predicted Based on Cyclic R-Curve.
    Tanaka K; Akiniwa Y
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates.
    Hosoi A; Kawada H
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29996529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.
    Patankar R
    Risk Anal; 2003 Oct; 23(5):929-36. PubMed ID: 12969408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncommon deformation mechanisms during fatigue-crack propagation in nanocrystalline alloys.
    Cheng S; Lee SY; Li L; Lei C; Almer J; Wang XL; Ungar T; Wang Y; Liaw PK
    Phys Rev Lett; 2013 Mar; 110(13):135501. PubMed ID: 23581334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles.
    Maksudov F; Kliuchnikov E; Marx KA; Purohit PK; Barsegov V
    Acta Biomater; 2023 Aug; 166():326-345. PubMed ID: 37142109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.
    Antunes RA; de Oliveira MC
    Acta Biomater; 2012 Mar; 8(3):937-62. PubMed ID: 21951920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatigue Growth Behaviour of Two Interacting Cracks with Different Crack Offset.
    Jin H; Cui B; Mao L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of fatigue crack growth in resin composite, dentin and the interface.
    Soappman MJ; Nazari A; Porter JA; Arola D
    Dent Mater; 2007 May; 23(5):608-14. PubMed ID: 16806452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene.
    Baker DA; Bellare A; Pruitt L
    J Biomed Mater Res A; 2003 Jul; 66(1):146-54. PubMed ID: 12833441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Strain Gradient on Fatigue Life of Carbon Steel for Pressure Vessels in Low-Cycle and High-Cycle Fatigue Regimes.
    Fujii T; Muhamad Azmi MSB; Tohgo K; Shimamura Y
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for fatigue crack propagation and remodelling in compact bone.
    Taylor D; Prendergast PJ
    Proc Inst Mech Eng H; 1997; 211(5):369-75. PubMed ID: 9427832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fatigue Crack Initiation Change of Cast AZ91 Magnesium Alloy from Low to Very High Cycle Fatigue Region.
    Fintová S; Trško L; Chlup Z; Pastorek F; Kajánek D; Kunz L
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of an interface failure model to predict fatigue crack growth in an implanted metallic femoral stem.
    Chen J; Browne M; Taylor M; Gregson PJ
    Comput Methods Programs Biomed; 2004 Mar; 73(3):249-56. PubMed ID: 14980406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic aspects of in vitro fatigue-crack growth in dentin.
    Kruzic JJ; Nalla RK; Kinney JH; Ritchie RO
    Biomaterials; 2005 Apr; 26(10):1195-204. PubMed ID: 15451639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age, dehydration and fatigue crack growth in dentin.
    Bajaj D; Sundaram N; Nazari A; Arola D
    Biomaterials; 2006 Apr; 27(11):2507-17. PubMed ID: 16338002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.