These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 25713457)
41. FEM Simulations of Fatigue Crack Initiation in the Oligocrystalline Microstructure of Stents. Lasko G; Schmauder S; Yang Y; Weiss S; Dogahe K Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687693 [TBL] [Abstract][Full Text] [Related]
42. Effect of Wave Process of Plastic Deformation at Forging on the Fatigue Fracture Mechanism of Titanium Compressor Disks of Gas Turbine Engine. Shanyavskiy AA; Soldatenkov AP; Nikitin AD Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917936 [TBL] [Abstract][Full Text] [Related]
43. Transition regimes for growing crack populations. Spyropoulos C; Scholz CH; Shaw BE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056105. PubMed ID: 12059645 [TBL] [Abstract][Full Text] [Related]
44. Stress ratio contributes to fatigue crack growth in dentin. Arola D; Zheng W; Sundaram N; Rouland JA J Biomed Mater Res A; 2005 May; 73(2):201-12. PubMed ID: 15744763 [TBL] [Abstract][Full Text] [Related]
45. Influence of Multi-Holes on Fatigue Behaviors of Cast Magnesium Alloys Based on In-Situ Scanning Electron Microscope Technology. Wang XS; Tan CH; Ma J; Zhu XD; Wang QY Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30216982 [TBL] [Abstract][Full Text] [Related]
46. The Effect of Microstructure and Axial Tension on Three-Point Bending Fatigue Behavior of TC4 in High Cycle and Very High Cycle Regimes. Bao X; Cheng L; Ding J; Chen X; Lu K; Cui W Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877816 [TBL] [Abstract][Full Text] [Related]
47. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors. Deng H; Li W; Sakai T; Sun Z Materials (Basel); 2015 Dec; 8(12):8338-8354. PubMed ID: 28793714 [TBL] [Abstract][Full Text] [Related]
48. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism. Gludovatz B; Demetriou MD; Floyd M; Hohenwarter A; Johnson WL; Ritchie RO Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18419-24. PubMed ID: 24167284 [TBL] [Abstract][Full Text] [Related]
49. Effect of Surface Mechanical Treatments on the Microstructure-Property-Performance of Engineering Alloys. Kumar D; Idapalapati S; Wang W; Narasimalu S Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394741 [TBL] [Abstract][Full Text] [Related]
50. Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses. Launey ME; Hofmann DC; Johnson WL; Ritchie RO Proc Natl Acad Sci U S A; 2009 Mar; 106(13):4986-91. PubMed ID: 19289820 [TBL] [Abstract][Full Text] [Related]
51. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law. Toribio J; Matos JC; González B Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798 [TBL] [Abstract][Full Text] [Related]
52. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys. Lee WJ; Chia WJ; Wang J; Chen Y; Vaynman S; Fine ME; Chung YW Langmuir; 2010 Nov; 26(21):16254-60. PubMed ID: 20527827 [TBL] [Abstract][Full Text] [Related]
53. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics). Masuda K; Ishihara S; Shibata H; Oguma N Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131 [TBL] [Abstract][Full Text] [Related]
54. Fatigue Crack Growth Behaviour of Precipitate-Strengthened CuNi Yang B; Li Y; Qin Y; Zhang J; Feng B; Liao Z; Xiao S; Yang G; Zhu T Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408697 [TBL] [Abstract][Full Text] [Related]
55. High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint. Kim Y; Hwang W Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818031 [TBL] [Abstract][Full Text] [Related]
56. Fatigue-Crack Detection and Monitoring through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers. Xiao W; Yu L; Joseph R; Giurgiutiu V Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471102 [TBL] [Abstract][Full Text] [Related]
57. Propagation of surface fatigue cracks in human cortical bone. Kruzic JJ; Scott JA; Nalla RK; Ritchie RO J Biomech; 2006; 39(5):968-72. PubMed ID: 15907859 [TBL] [Abstract][Full Text] [Related]
58. On the origins of fatigue strength in crystalline metallic materials. Stinville JC; Charpagne MA; Cervellon A; Hemery S; Wang F; Callahan PG; Valle V; Pollock TM Science; 2022 Sep; 377(6610):1065-1071. PubMed ID: 36048948 [TBL] [Abstract][Full Text] [Related]
59. Fractographic analysis of fatigue damage in 7000 aluminium alloys. Cvijović Z; Vratnica M; Gerić K J Microsc; 2008 Dec; 232(3):589-94. PubMed ID: 19094044 [TBL] [Abstract][Full Text] [Related]
60. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels. Mueller I; Rementeria R; Caballero FG; Kuntz M; Sourmail T; Kerscher E Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773953 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]