BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 25713464)

  • 1. NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury.
    Vadivelu S; Stewart TJ; Qu Y; Horn K; Liu S; Li Q; Silver J; McDonald JW
    Stem Cells Transl Med; 2015 Apr; 4(4):401-11. PubMed ID: 25713464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors.
    Jones LL; Yamaguchi Y; Stallcup WB; Tuszynski MH
    J Neurosci; 2002 Apr; 22(7):2792-803. PubMed ID: 11923444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase of NG2-positive cells associated with radial glia following traumatic spinal cord injury in adult rats.
    Wu D; Shibuya S; Miyamoto O; Itano T; Yamamoto T
    J Neurocytol; 2005 Dec; 34(6):459-69. PubMed ID: 16902766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal cord regeneration.
    Young W
    Cell Transplant; 2014; 23(4-5):573-611. PubMed ID: 24816452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord.
    Hsu JY; Bourguignon LY; Adams CM; Peyrollier K; Zhang H; Fandel T; Cun CL; Werb Z; Noble-Haeusslein LJ
    J Neurosci; 2008 Dec; 28(50):13467-77. PubMed ID: 19074020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.
    Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH
    J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar.
    Wu D; Klaw MC; Connors T; Kholodilov N; Burke RE; Tom VJ
    J Neurosci; 2015 Aug; 35(31):11068-80. PubMed ID: 26245968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.
    Takeda A; Okada S; Funakoshi K
    Brain Res; 2017 Oct; 1673():23-29. PubMed ID: 28801063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3.
    Massey JM; Amps J; Viapiano MS; Matthews RT; Wagoner MR; Whitaker CM; Alilain W; Yonkof AL; Khalyfa A; Cooper NG; Silver J; Onifer SM
    Exp Neurol; 2008 Feb; 209(2):426-45. PubMed ID: 17540369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    BMC Neurol; 2009 Jul; 9():32. PubMed ID: 19604403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NG2: a component of the glial scar that inhibits axon growth.
    Tan AM; Zhang W; Levine JM
    J Anat; 2005 Dec; 207(6):717-25. PubMed ID: 16367799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrapment via synaptic-like connections between NG2 proteoglycan+ cells and dystrophic axons in the lesion plays a role in regeneration failure after spinal cord injury.
    Filous AR; Tran A; Howell CJ; Busch SA; Evans TA; Stallcup WB; Kang SH; Bergles DE; Lee SI; Levine JM; Silver J
    J Neurosci; 2014 Dec; 34(49):16369-84. PubMed ID: 25471575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NG2/CSPG4 and progranulin in the posttraumatic glial scar.
    Schäfer MKE; Tegeder I
    Matrix Biol; 2018 Aug; 68-69():571-588. PubMed ID: 29054751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury.
    Fan C; Zheng Y; Cheng X; Qi X; Bu P; Luo X; Kim DH; Cao Q
    Int J Biol Sci; 2013; 9(1):78-93. PubMed ID: 23289019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal regeneration of Clarke's neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC.
    Yick LW; Cheung PT; So KF; Wu W
    Exp Neurol; 2003 Jul; 182(1):160-8. PubMed ID: 12821386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Biology of Regeneration Failure and Success After Spinal Cord Injury.
    Tran AP; Warren PM; Silver J
    Physiol Rev; 2018 Apr; 98(2):881-917. PubMed ID: 29513146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IT delivery of ChABC modulates NG2 and promotes GAP-43 axonal regrowth after spinal cord injury.
    Novotna I; Slovinska L; Vanicky I; Cizek M; Radonak J; Cizkova D
    Cell Mol Neurobiol; 2011 Nov; 31(8):1129-39. PubMed ID: 21630006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury.
    Hasegawa K; Chang YW; Li H; Berlin Y; Ikeda O; Kane-Goldsmith N; Grumet M
    Exp Neurol; 2005 Jun; 193(2):394-410. PubMed ID: 15869942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.