These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25713516)

  • 21. A Chronically Implantable Bidirectional Neural Interface for Non-human Primates.
    Komatsu M; Sugano E; Tomita H; Fujii N
    Front Neurosci; 2017; 11():514. PubMed ID: 28966573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Striatonigral control of movement velocity in mice.
    Bartholomew RA; Li H; Gaidis EJ; Stackmann M; Shoemaker CT; Rossi MA; Yin HH
    Eur J Neurosci; 2016 Apr; 43(8):1097-110. PubMed ID: 27091436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain.
    Lu L; Gutruf P; Xia L; Bhatti DL; Wang X; Vazquez-Guardado A; Ning X; Shen X; Sang T; Ma R; Pakeltis G; Sobczak G; Zhang H; Seo DO; Xue M; Yin L; Chanda D; Sheng X; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1374-E1383. PubMed ID: 29378934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice.
    Kolodziej A; Lippert M; Angenstein F; Neubert J; Pethe A; Grosser OS; Amthauer H; Schroeder UH; Reymann KG; Scheich H; Ohl FW; Goldschmidt J
    Neuroimage; 2014 Dec; 103():171-180. PubMed ID: 25234116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection.
    Liu C; Zhao Y; Cai X; Xie Y; Wang T; Cheng D; Li L; Li R; Deng Y; Ding H; Lv G; Zhao G; Liu L; Zou G; Feng M; Sun Q; Yin L; Sheng X
    Microsyst Nanoeng; 2020; 6():64. PubMed ID: 34567675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implantable Optrode Array for Optogenetic Modulation and Electrical Neural Recording.
    Jeon S; Lee Y; Ryu D; Cho YK; Lee Y; Jun SB; Ji CH
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34205473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles.
    Chen Z; Tsytsarev V; Finfrock YZ; Antipova OA; Cai Z; Arakawa H; Lischka FW; Hooks BM; Wilton R; Wang D; Liu Y; Gaitan B; Tao Y; Chen Y; Erzurumlu RS; Yang H; Rozhkova EA
    ACS Nano; 2021 Mar; 15(3):5201-5208. PubMed ID: 33625219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-wavelength light emitting diode-based disposable optrode array for in vivo optogenetic modulation.
    Jeon S; Kim JH; Lee H; Kim YK; Jun SB; Lee SH; Ji CH
    J Biophotonics; 2019 May; 12(5):e201800343. PubMed ID: 30588762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe.
    McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K
    Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A wireless implantable switched-capacitor based optogenetic stimulating system.
    Lee HM; Kwon KY; Li W; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():878-81. PubMed ID: 25570099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics.
    Noh KN; Park SI; Qazi R; Zou Z; Mickle AD; Grajales-Reyes JG; Jang KI; Gereau RW; Xiao J; Rogers JA; Jeong JW
    Small; 2018 Jan; 14(4):. PubMed ID: 29215787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.
    Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P
    Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy: device development and experimental assessment
    Nakajima K; Kimura T; Takakura H; Yoshikawa Y; Kameda A; Shindo T; Sato K; Kobayashi H; Ogawa M
    Oncotarget; 2018 Apr; 9(28):20048-20057. PubMed ID: 29732002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice.
    Hashimoto M; Hata A; Miyata T; Hirase H
    Neurophotonics; 2014 Jul; 1(1):011002. PubMed ID: 26157963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Throughput Analysis of Behavior Under the Control of Optogenetics in Caenorhabditis elegans.
    Yu AJ; McDiarmid TA; Ardiel EL; Rankin CH
    Curr Protoc Neurosci; 2019 Jan; 86(1):e57. PubMed ID: 30387915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.