These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 25713537)

  • 1. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research.
    Hobiger K; Friedrich T
    Front Pharmacol; 2015; 6():20. PubMed ID: 25713537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A126 in the active site and TI167/168 in the TI loop are essential determinants of the substrate specificity of PTEN.
    Leitner MG; Hobiger K; Mavrantoni A; Feuer A; Oberwinkler J; Oliver D; Halaszovich CR
    Cell Mol Life Sci; 2018 Nov; 75(22):4235-4250. PubMed ID: 29987362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-Controlled Enzymes: The New JanusBifrons.
    Villalba-Galea CA
    Front Pharmacol; 2012; 3():161. PubMed ID: 22993507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase.
    Rosasco MG; Gordon SE; Bajjalieh SM
    Biophys J; 2015 Dec; 109(12):2480-2491. PubMed ID: 26682807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The voltage sensing phosphatase (VSP) localizes to the apical membrane of kidney tubule epithelial cells.
    Ratzan W; Rayaprolu V; Killian SE; Bradley R; Kohout SC
    PLoS One; 2019; 14(4):e0209056. PubMed ID: 30964862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional diversity of voltage-sensing phosphatases in two urodele amphibians.
    Mutua J; Jinno Y; Sakata S; Okochi Y; Ueno S; Tsutsui H; Kawai T; Iwao Y; Okamura Y
    Physiol Rep; 2014 Jul; 2(7):. PubMed ID: 25347851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the activity of a phosphatase and tensin homolog (PTEN) by membrane potential.
    Lacroix J; Halaszovich CR; Schreiber DN; Leitner MG; Bezanilla F; Oliver D; Villalba-Galea CA
    J Biol Chem; 2011 May; 286(20):17945-53. PubMed ID: 21454672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights in the activity of voltage sensitive phosphatases.
    Villalba-Galea CA
    Cell Signal; 2012 Aug; 24(8):1541-7. PubMed ID: 22481094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depression of voltage-activated Ca2+ release in skeletal muscle by activation of a voltage-sensing phosphatase.
    Berthier C; Kutchukian C; Bouvard C; Okamura Y; Jacquemond V
    J Gen Physiol; 2015 Apr; 145(4):315-30. PubMed ID: 25825170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion channel regulation by phosphoinositides analyzed with VSPs-PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility.
    Rjasanow A; Leitner MG; Thallmair V; Halaszovich CR; Oliver D
    Front Pharmacol; 2015; 6():127. PubMed ID: 26150791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of K364 next to the active site cysteine in voltage-dependent phosphatase activity of Ci-VSP.
    Paixao IC; Mizutani N; Matsuda M; Andriani RT; Kawai T; Nakagawa A; Okochi Y; Okamura Y
    Biophys J; 2023 Jun; 122(11):2267-2284. PubMed ID: 36680342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies on protein tyrosine phosphatases.
    Zhang ZY
    Prog Nucleic Acid Res Mol Biol; 2003; 73():171-220. PubMed ID: 12882518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence.
    Keum D; Kruse M; Kim DI; Hille B; Suh BC
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):E3686-95. PubMed ID: 27222577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering.
    Okamura Y; Kawanabe A; Kawai T
    Physiol Rev; 2018 Oct; 98(4):2097-2131. PubMed ID: 30067160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage sensitive phosphoinositide phosphatases of Xenopus: their tissue distribution and voltage dependence.
    Ratzan WJ; Evsikov AV; Okamura Y; Jaffe LA
    J Cell Physiol; 2011 Nov; 226(11):2740-6. PubMed ID: 21618529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Extended Family of Protein Tyrosine Phosphatases.
    Alonso A; Nunes-Xavier CE; BayĆ³n Y; Pulido R
    Methods Mol Biol; 2016; 1447():1-23. PubMed ID: 27514797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Conserved motifs in voltage sensing proteins].
    Wang CH; Xie ZL; Lv JW; Yu ZD; Shao SL
    Sheng Li Xue Bao; 2012 Aug; 64(4):379-86. PubMed ID: 22907298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting histidine-dependent acid phosphatases: a distinct group of tyrosine phosphatases.
    Veeramani S; Lee MS; Lin MF
    Trends Biochem Sci; 2009 Jun; 34(6):273-8. PubMed ID: 19467874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.