BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 2571357)

  • 1. Partial unfolding of dodecameric glutamine synthetase from Escherichia coli: temperature-induced, reversible transitions of two domains.
    Shrake A; Fisher MT; McFarland PJ; Ginsburg A
    Biochemistry; 1989 Jul; 28(15):6281-94. PubMed ID: 2571357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic effects of active-site ligands on the reversible, partial unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric studies.
    Zolkiewski M; Ginsburg A
    Biochemistry; 1992 Dec; 31(48):11991-2000. PubMed ID: 1360813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential scanning calorimetry study of reversible, partial unfolding transitions in dodecameric glutamine synthetase from Escherichia coli.
    Ginsburg A; Zolkiewski M
    Biochemistry; 1991 Oct; 30(39):9421-9. PubMed ID: 1680002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of active-site ligand binding to Escherichia coli glutamine synthetase.
    Ginsburg A; Gorman EG; Neece SH; Blackburn MB
    Biochemistry; 1987 Sep; 26(19):5989-96. PubMed ID: 2891374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active site ligand stabilization of quaternary structures of glutamine synthetase from Escherichia coli.
    Maurizi MR; Ginsburg A
    J Biol Chem; 1982 Jun; 257(12):7246-51. PubMed ID: 6123504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distances between active site probes in glutamine synthetase from Escherichia coli: fluorescence energy transfer in free and in stacked dodecamers.
    Maurizi MR; Kasprzyk PG; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):141-51. PubMed ID: 2869781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal unfolding of dodecameric glutamine synthetase: inhibition of aggregation by urea.
    Nosworthy NJ; Ginsburg A
    Protein Sci; 1997 Dec; 6(12):2617-23. PubMed ID: 9416610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular self-assembly of Escherichia coli glutamine synthetase: effects of pressure and adenylylation state on dodecamer stacking.
    Atkins WM
    Biochemistry; 1994 Dec; 33(50):14965-73. PubMed ID: 7999752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urea-induced dissociation and unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric and spectral studies.
    Zolkiewski M; Nosworthy NJ; Ginsburg A
    Protein Sci; 1995 Aug; 4(8):1544-52. PubMed ID: 8520480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in thermal stability between reduced and oxidized cytochrome b562 from Escherichia coli.
    Fisher MT
    Biochemistry; 1991 Oct; 30(41):10012-8. PubMed ID: 1911766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivation of glutamine synthetase from Escherichia coli after auto-inactivation with L-methionine-S-sulfoximine, ATP, and Mn2+.
    Maurizi MR; Ginsburg A
    J Biol Chem; 1982 Apr; 257(8):4271-8. PubMed ID: 6121801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP.
    Fisher MT
    Biochemistry; 1992 Apr; 31(16):3955-63. PubMed ID: 1348957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADP, chloride ion, and metal ion binding to bovine brain glutamine synthetase.
    Maurizi MR; Pinkofsky HB; Ginsburg A
    Biochemistry; 1987 Aug; 26(16):5023-31. PubMed ID: 2889467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):544-53. PubMed ID: 3200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation.
    Fisher MT; Stadtman ER
    J Biol Chem; 1992 Jan; 267(3):1872-80. PubMed ID: 1346137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of Cibacron Blue F3GA with glutamine synthetase: use of the dye as a conformational probe. 1. Studies using unfractionated dye samples.
    Federici MM; Chock PB; Stadtman ER
    Biochemistry; 1985 Jan; 24(3):647-60. PubMed ID: 2859880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine 5'-triphosphate analogues as structural probes for Escherichia coli glutamine synthetase.
    Maurizi MR; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):131-40. PubMed ID: 2869780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular self-assembly of Escherichia coli glutamine synthetase: characterization of dodecamer stacking and high order association.
    Yanchunas J; Dabrowski MJ; Schurke P; Atkins WM
    Biochemistry; 1994 Dec; 33(50):14949-56. PubMed ID: 7999750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK.
    Montgomery D; Jordan R; McMacken R; Freire E
    J Mol Biol; 1993 Jul; 232(2):680-92. PubMed ID: 8102181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.