BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 2571357)

  • 41. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mg2+ is bound to glutamine synthetase extracted from bovine or ovine brain in the presence of L-methionine-S-sulfoximine phosphate.
    Maurizi MR; Pinkofsky HB; McFarland PJ; Ginsburg A
    Arch Biochem Biophys; 1986 Apr; 246(1):494-500. PubMed ID: 2870682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive.
    Pearson JT; Dabrowski MJ; Kung I; Atkins WM
    Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supramolecular self-assembly of glutamine synthetase: mutagenesis of a novel intermolecular metal binding site required for dodecamer stacking.
    Dabrowski MJ; Yanchunas J; Villafranca BC; Dietze EC; Schurke P; Atkins WM
    Biochemistry; 1994 Dec; 33(50):14957-64. PubMed ID: 7999751
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification and characterization of glutamine synthetase from Clostridium pasteurianum.
    Krishnan IS; Singhal RK; Dua RD
    Biochemistry; 1986 Apr; 25(7):1589-99. PubMed ID: 2871863
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of the two-state behavior of the thermal unfolding serum retinol binding protein containing a single retinol ligand.
    Muccio DD; Waterhous DV; Fish F; Brouillette CG
    Biochemistry; 1992 Jun; 31(24):5560-7. PubMed ID: 1610801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reversible unfolding of the major fraction of ovalbumin by guanidine hydrochloride.
    Ahmad F; Salahuddin A
    Biochemistry; 1976 Nov; 15(23):5168-75. PubMed ID: 990272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of metal ions and adenylylation state on the internal thermodynamics of phosphoryl transfer in the Escherichia coli glutamine synthetase reaction.
    Abell LM; Villafranca JJ
    Biochemistry; 1991 Feb; 30(5):1413-8. PubMed ID: 1671336
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aggregation and thermo-inactivation of glutamine synthetase from an extreme thermophile, Bacillus caldolyticus.
    Merkler DJ; Srikumar K; Marchese-Ragona SP; Wedler FC
    Biochim Biophys Acta; 1988 Jan; 952(1):101-14. PubMed ID: 2891380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acid and thermal unfolding of Escherichia coli dihydrofolate reductase.
    Ohmae E; Kurumiya T; Makino S; Gekko K
    J Biochem; 1996 Nov; 120(5):946-53. PubMed ID: 8982861
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic cycle of the biosynthetic reaction catalyzed by adenylylated glutamine synthetase from Escherichia coli.
    Rhee SG; Ubom GA; Hunt JB; Chock PB
    J Biol Chem; 1982 Jan; 257(1):289-97. PubMed ID: 6118373
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Roles of metal ions in the maintenance of the tertiary and quaternary structure of arginase from Saccharomyces cerevisiae.
    Green SM; Ginsburg A; Lewis MS; Hensley P
    J Biol Chem; 1991 Nov; 266(32):21474-81. PubMed ID: 1939179
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calorimetric and spectroscopic investigation of the unfolding of human apolipoprotein B.
    Walsh MT; Atkinson D
    J Lipid Res; 1990 Jun; 31(6):1051-62. PubMed ID: 2373955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subunit interaction in unadenylylated glutamine synthetase from Escherichia coli. Evidence from methionine sulfoximine inhibition studies.
    Rhee SG; Chock PB; Wedler FC; Sugiyama Y
    J Biol Chem; 1981 Jan; 256(2):644-8. PubMed ID: 6108959
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bovine retinal glutamine synthetase 2. Regulation and properties on the basis of glutamine synthetase and glutamyl transferase reactions.
    Pahuja SL; Reid TW
    Exp Eye Res; 1985 Jan; 40(1):75-83. PubMed ID: 2858400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of Escherichia coli glutamine synthetase. Evidence for the action of some feedback modifiers at the active site of the unadenylylated enzyme.
    Dahlquist FW; Purich DL
    Biochemistry; 1975 May; 14(9):1980-9. PubMed ID: 235974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Local and long-range interactions in the thermal unfolding transition of bovine pancreatic ribonuclease A.
    Navon A; Ittah V; Laity JH; Scheraga HA; Haas E; Gussakovsky EE
    Biochemistry; 2001 Jan; 40(1):93-104. PubMed ID: 11141060
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of denaturation by guanidine hydrochloride of the wild type tryptophan synthase alpha-subunit of Escherichia coli and two mutant protein (Glu 49 replaced by Met or Gln).
    Yutani K; Ogasahara K; Suzuki M; Sugino Y
    J Biochem; 1979 Apr; 85(4):915-21. PubMed ID: 378988
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Affinity labeling of the active site of Escherichia coli glutamine synthetase by 5'-p-fluorosulfonylbenzoyladenosine.
    Foster WB; Griffith MJ; Kingdon HS
    J Biol Chem; 1981 Jan; 256(2):882-6. PubMed ID: 6108960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.