These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25713667)

  • 1. The effect of climbing ability and slope inclination on vertical foot loading using a novel force sensor instrumentation system.
    Baláš J; Panáčková M; Jandová S; Martin AJ; Strejcová B; Vomáčko L; Charousek J; Cochrane DJ; Hamlin M; Draper N
    J Hum Kinet; 2014 Dec; 44():75-81. PubMed ID: 25713667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between climbing ability and physiological responses to rock climbing.
    Baláš J; Panáčková M; Strejcová B; Martin AJ; Cochrane DJ; Kaláb M; Kodejška J; Draper N
    ScientificWorldJournal; 2014; 2014():678387. PubMed ID: 24587742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of an on-sight lead on the physiological and psychological responses to rock climbing.
    Draper N; Jones GA; Fryer S; Hodgson C; Blackwell G
    J Sports Sci Med; 2008; 7(4):492-8. PubMed ID: 24149956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Height on Perceived Exertion and Physiological Responses for Climbers of Differing Ability Levels.
    Gajdošík J; Baláš J; Draper N
    Front Psychol; 2020; 11():997. PubMed ID: 32581917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic response during sport rock climbing and the effects of active versus passive recovery.
    Watts PB; Daggett M; Gallagher P; Wilkins B
    Int J Sports Med; 2000 Apr; 21(3):185-90. PubMed ID: 10834350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular and metabolic responses during indoor climbing and laboratory cycling exercise in advanced and élite climbers.
    Limonta E; Brighenti A; Rampichini S; Cè E; Schena F; Esposito F
    Eur J Appl Physiol; 2018 Feb; 118(2):371-379. PubMed ID: 29234917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance.
    MacLeod D; Sutherland DL; Buntin L; Whitaker A; Aitchison T; Watt I; Bradley J; Grant S
    J Sports Sci; 2007 Oct; 25(12):1433-43. PubMed ID: 17786696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physiology of rock climbing.
    Giles LV; Rhodes EC; Taunton JE
    Sports Med; 2006; 36(6):529-45. PubMed ID: 16737345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A psychophysiological comparison of on-sight lead and top rope ascents in advanced rock climbers.
    Fryer S; Dickson T; Draper N; Blackwell G; Hillier S
    Scand J Med Sci Sports; 2013 Oct; 23(5):645-50. PubMed ID: 22299663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy cost of sport rock climbing in elite performers.
    Booth J; Marino F; Hill C; Gwinn T
    Br J Sports Med; 1999 Feb; 33(1):14-8. PubMed ID: 10027051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute changes in handgrip strength, endurance, and blood lactate with sustained sport rock climbing.
    Watts P; Newbury V; Sulentic J
    J Sports Med Phys Fitness; 1996 Dec; 36(4):255-60. PubMed ID: 9062048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ergonomics assessment of three simulated 120 m ladder ascents: A comparison of novice and experienced climbers.
    Milligan GS; O'Halloran J; Tipton MJ
    Appl Ergon; 2020 May; 85():103043. PubMed ID: 31929026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Sight and Red-Point Climbing: Changes in Performance and Route-Finding Ability in Male Advanced Climbers.
    Limonta E; Fanchini M; Rampichini S; Cé E; Longo S; Coratella G; Esposito F
    Front Psychol; 2020; 11():902. PubMed ID: 32547440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Three-dimensional analysis of variations of the forces associated with the climbing task in adolescents].
    Testa M; Debû B
    Arch Physiol Biochem; 1997 Sep; 105(5):496-506. PubMed ID: 9471341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physiological effect of a 'climb assist' device on vertical ladder climbing.
    Barron PJ; Burgess K; Cooper K; Stewart AD
    Ergonomics; 2017 Jul; 60(7):1008-1013. PubMed ID: 27745528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of hold regularity on perceptual-motor behaviour in indoor climbing.
    Button C; Orth D; Davids K; Seifert L
    Eur J Sport Sci; 2018 Sep; 18(8):1090-1099. PubMed ID: 29792113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of climbing-specific strength and endurance between lead and boulder climbers.
    Stien N; Saeterbakken AH; Hermans E; Vereide VA; Olsen E; Andersen V
    PLoS One; 2019; 14(9):e0222529. PubMed ID: 31536569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of aerial ladder rung spacing on firefighter climbing biomechanics.
    Simeonov P; Hsiao H; Armstrong T; Fu Q; Woolley C; Kau TY
    Appl Ergon; 2020 Jan; 82():102911. PubMed ID: 31422289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selected movement and force pattern differences in rail- and rung-climbing of fire apparatus aerial ladders at 52.5° slope.
    Fu QA; Simeonov P; Hsiao H; Woolley C; Armstrong TJ
    Appl Ergon; 2022 Feb; 99():103639. PubMed ID: 34753097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and repeatability of the Pedar Mobile system in long-term vertical force measurements.
    Hurkmans HL; Bussmann JB; Benda E; Verhaar JA; Stam HJ
    Gait Posture; 2006 Jan; 23(1):118-25. PubMed ID: 16260142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.