BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25714036)

  • 1. Conquering 2-aminopurine's deficiencies: highly emissive isomorphic guanosine surrogate faithfully monitors guanosine conformation and dynamics in DNA.
    Sholokh M; Sharma R; Shin D; Das R; Zaporozhets OA; Tor Y; Mély Y
    J Am Chem Soc; 2015 Mar; 137(9):3185-8. PubMed ID: 25714036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing structure and dynamics of DNA with 2-aminopurine: effects of local environment on fluorescence.
    Rachofsky EL; Osman R; Ross JB
    Biochemistry; 2001 Jan; 40(4):946-56. PubMed ID: 11170416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence properties of 8-(2-pyridyl)guanine "2PyG" as compared to 2-aminopurine in DNA.
    Dumas A; Luedtke NW
    Chembiochem; 2011 Sep; 12(13):2044-51. PubMed ID: 21786378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of the IRE RNA hairpin loop probed by 2-aminopurine fluorescence and stochastic dynamics simulations.
    Hall KB; Williams DJ
    RNA; 2004 Jan; 10(1):34-47. PubMed ID: 14681583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tautomers of a Fluorescent G Surrogate and Their Distinct Photophysics Provide Additional Information Channels.
    Sholokh M; Improta R; Mori M; Sharma R; Kenfack C; Shin D; Voltz K; Stote RH; Zaporozhets OA; Botta M; Tor Y; Mély Y
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):7974-7978. PubMed ID: 27273741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast fluorescence decay profiles reveal differential unstacking of 2-aminopurine from neighboring bases in single-stranded DNA-binding protein subsites.
    Nguyen HN; Zhao L; Gray CW; Gray DM; Xia T
    Biochemistry; 2011 Oct; 50(42):8989-9001. PubMed ID: 21916413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting and premelting transitions of an oligomer measured by DNA base fluorescence and absorption.
    Xu D; Evans KO; Nordlund TM
    Biochemistry; 1994 Aug; 33(32):9592-9. PubMed ID: 8068635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy.
    Voltz K; Léonard J; Touceda PT; Conyard J; Chaker Z; Dejaegere A; Godet J; Mély Y; Haacke S; Stote RH
    Nucleic Acids Res; 2016 Apr; 44(7):3408-19. PubMed ID: 26896800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What Makes Thienoguanosine an Outstanding Fluorescent DNA Probe?
    Kuchlyan J; Martinez-Fernandez L; Mori M; Gavvala K; Ciaco S; Boudier C; Richert L; Didier P; Tor Y; Improta R; Mély Y
    J Am Chem Soc; 2020 Oct; 142(40):16999-17014. PubMed ID: 32915558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking.
    Jean JM; Hall KB
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):37-41. PubMed ID: 11120885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast site-specific fluorescence quenching of 2-aminopurine in a DNA hairpin studied by femtosecond down-conversion.
    Gelot T; Tourón-Touceda P; Crégut O; Léonard J; Haacke S
    J Phys Chem A; 2012 Mar; 116(11):2819-25. PubMed ID: 22289047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding.
    Bonnist EY; Liebert K; Dryden DT; Jeltsch A; Jones AC
    Biophys Chem; 2012 Jan; 160(1):28-34. PubMed ID: 21962489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of 2-aminopurine fluorescence to study DNA polymerase function.
    Reha-Krantz LJ
    Methods Mol Biol; 2009; 521():381-96. PubMed ID: 19563118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Aminopurine as a fluorescent probe of DNA conformation and the DNA-enzyme interface.
    Jones AC; Neely RK
    Q Rev Biophys; 2015 May; 48(2):244-79. PubMed ID: 25881643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching.
    Tleugabulova D; Reha-Krantz LJ
    Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation by fluorescence correlation spectroscopy of the chaperoning interactions of HIV-1 nucleocapsid protein with the viral DNA initiation sequences.
    Egelé C; Schaub E; Piémont E; de Rocquigny H; Mély Y
    C R Biol; 2005 Dec; 328(12):1041-51. PubMed ID: 16314282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence intensity decays of 2-aminopurine solutions: lifetime distribution approach.
    Bharill S; Sarkar P; Ballin JD; Gryczynski I; Wilson GM; Gryczynski Z
    Anal Biochem; 2008 Jun; 377(2):141-9. PubMed ID: 18406333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-wavelength fluorescence from 2-aminopurine-nucleobase dimers in DNA.
    Bonnist EY; Jones AC
    Chemphyschem; 2008 Jun; 9(8):1121-9. PubMed ID: 18446915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.