These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 25714114)
1. Fire Tests on E-vehicle Battery Cells and Packs. Sturk D; Hoffmann L; Ahlberg Tidblad A Traffic Inj Prev; 2015; 16 Suppl 1():S159-64. PubMed ID: 25714114 [TBL] [Abstract][Full Text] [Related]
2. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles. Shafique M; Akbar A; Rafiq M; Azam A; Luo X Waste Manag Res; 2023 Feb; 41(2):376-388. PubMed ID: 36373335 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the critical external heat leading to the failure of lithium-ion batteries. Tang W; Tam WC; Yuan L; Dubaniewicz T; Thomas R; Soles J Appl Therm Eng; 2020 Oct; 179():. PubMed ID: 34434069 [TBL] [Abstract][Full Text] [Related]
4. Toxic fluoride gas emissions from lithium-ion battery fires. Larsson F; Andersson P; Blomqvist P; Mellander BE Sci Rep; 2017 Aug; 7(1):10018. PubMed ID: 28855553 [TBL] [Abstract][Full Text] [Related]
5. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Dunn J; Slattery M; Kendall A; Ambrose H; Shen S Environ Sci Technol; 2021 Apr; 55(8):5189-5198. PubMed ID: 33764763 [TBL] [Abstract][Full Text] [Related]
6. A review of improvements on electric vehicle battery. Koech AK; Mwandila G; Mulolani F Heliyon; 2024 Aug; 10(15):e34806. PubMed ID: 39170484 [TBL] [Abstract][Full Text] [Related]
7. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China. Yang H; Song X; Zhang X; Lu B; Yang D; Li B Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548 [TBL] [Abstract][Full Text] [Related]
8. Performance and Ageing Robustness of Graphite/NMC Pouch Prototypes Manufactured through Eco-Friendly Materials and Processes. Loeffler N; Kim GT; Passerini S; Gutierrez C; Cendoya I; De Meatza I; Alessandrini F; Appetecchi GB ChemSusChem; 2017 Sep; 10(18):3581-3587. PubMed ID: 28783250 [TBL] [Abstract][Full Text] [Related]
9. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes. Croy JR; Balasubramanian M; Gallagher KG; Burrell AK Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO Peng Y; Yang L; Ju X; Liao B; Ye K; Li L; Cao B; Ni Y J Hazard Mater; 2020 Jan; 381():120916. PubMed ID: 31387075 [TBL] [Abstract][Full Text] [Related]
11. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value. Cui J; Tan Q; Liu L; Li J Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409 [TBL] [Abstract][Full Text] [Related]
12. Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium cobalt oxide to Daphnia magna. Bozich J; Hang M; Hamers R; Klaper R Environ Toxicol Chem; 2017 Sep; 36(9):2493-2502. PubMed ID: 28295556 [TBL] [Abstract][Full Text] [Related]
13. Recovery of lithium and cobalt from lithium cobalt oxide and lithium nickel manganese cobalt oxide batteries using supercritical water. Barros TV; Notario VA; de Oliveira JA; Bispo DF; Freitas LDS; Jegatheesan V; Cardozo-Filho L Environ Pollut; 2024 Oct; 359():124570. PubMed ID: 39029860 [TBL] [Abstract][Full Text] [Related]
14. Ecotoxicity Evaluation of Fire-Extinguishing Water from Large-Scale Battery and Battery Electric Vehicle Fire Tests. Quant M; Willstrand O; Mallin T; Hynynen J Environ Sci Technol; 2023 Mar; 57(12):4821-4830. PubMed ID: 36913186 [TBL] [Abstract][Full Text] [Related]
15. Assessment of an eco-efficient process for the optimization of metal recovery in lithium cobalt oxide and lithium nickel manganese cobalt oxide batteries. Barros TV; de Oliveira JA; Dos Santos MP; Bispo DF; Freitas LDS; Jegatheesan V; Cardozo-Filho L Chemosphere; 2024 Sep; 364():143209. PubMed ID: 39216553 [TBL] [Abstract][Full Text] [Related]
16. Materials recovery from NMC batteries with water as the sole solvent. Karati A; Gargh PP; Paul S; Das S; Shrotriya P; Nlebedim IC J Environ Manage; 2024 Aug; 366():121710. PubMed ID: 38986378 [TBL] [Abstract][Full Text] [Related]
17. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Xiong S; Ji J; Ma X Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692 [TBL] [Abstract][Full Text] [Related]
18. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Majeau-Bettez G; Hawkins TR; Strømman AH Environ Sci Technol; 2011 May; 45(10):4548-54. PubMed ID: 21506538 [TBL] [Abstract][Full Text] [Related]
19. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414 [TBL] [Abstract][Full Text] [Related]
20. The fire risk of portable batteries in their end-of-life: Investigation of the state of charge of waste lithium-ion batteries in Austria. Nigl T; Bäck T; Stuhlpfarrer S; Pomberger R Waste Manag Res; 2021 Sep; 39(9):1193-1199. PubMed ID: 33843368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]