BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 25714377)

  • 1. Snake venom derived molecules in tumor angiogenesis and its application in cancer therapy; an overview.
    Dhananjaya BL; Sivashankari PR
    Curr Top Med Chem; 2015; 15(7):649-57. PubMed ID: 25714377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overview of the immune modulating effects of enzymatic toxins from snake venoms.
    Burin SM; Menaldo DL; Sampaio SV; Frantz FG; Castro FA
    Int J Biol Macromol; 2018 Apr; 109():664-671. PubMed ID: 29274419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging anticancer potential and mechanisms of snake venom toxins: A review.
    Guo X; Fu Y; Peng J; Fu Y; Dong S; Ding RB; Qi X; Bao J
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131990. PubMed ID: 38704067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bothrops pauloensis snake venom toxins: the search for new therapeutic models.
    Rodrigues VM; Lopes DS; Castanheira LE; Gimenes SN; Naves de Souza DL; Ache DC; Borges IP; Yoneyama KA; Rodrigues RS
    Curr Top Med Chem; 2015; 15(7):670-84. PubMed ID: 25686731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates.
    Diniz-Sousa R; Caldeira CADS; Pereira SS; Da Silva SL; Fernandes PA; Teixeira LMC; Zuliani JP; Soares AM
    Int J Biol Macromol; 2023 May; 238():124357. PubMed ID: 37028634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snake Venom: From Deadly Toxins to Life-saving Therapeutics.
    Waheed H; Moin SF; Choudhary MI
    Curr Med Chem; 2017; 24(17):1874-1891. PubMed ID: 28578650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways.
    Bickler PE
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 31979014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis.
    Kang TS; Georgieva D; Genov N; Murakami MT; Sinha M; Kumar RP; Kaur P; Kumar S; Dey S; Sharma S; Vrielink A; Betzel C; Takeda S; Arni RK; Singh TP; Kini RM
    FEBS J; 2011 Dec; 278(23):4544-76. PubMed ID: 21470368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minor snake venom proteins: Structure, function and potential applications.
    Boldrini-França J; Cologna CT; Pucca MB; Bordon KC; Amorim FG; Anjolette FA; Cordeiro FA; Wiezel GA; Cerni FA; Pinheiro-Junior EL; Shibao PY; Ferreira IG; de Oliveira IS; Cardoso IA; Arantes EC
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):824-838. PubMed ID: 28012742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pharmacological role of phosphatases (acid and alkaline phosphomonoesterases) in snake venoms related to release of purines - a multitoxin.
    Dhananjaya BL; D'Souza CJ
    Basic Clin Pharmacol Toxicol; 2011 Feb; 108(2):79-83. PubMed ID: 21156030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snake venom components affecting blood coagulation and the vascular system: structural similarities and marked diversity.
    Yamazaki Y; Morita T
    Curr Pharm Des; 2007; 13(28):2872-86. PubMed ID: 17979732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases.
    Fox JW
    Toxicon; 2013 Feb; 62():75-82. PubMed ID: 23010165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypotensive peptides from snake venoms: structure, function and mechanism.
    Xu X; Li B; Zhu S; Rong R
    Curr Top Med Chem; 2015; 15(7):658-69. PubMed ID: 25686732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snake venom toxins: toxicity and medicinal applications.
    Chan YS; Cheung RCF; Xia L; Wong JH; Ng TB; Chan WY
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6165-6181. PubMed ID: 27245678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Snake venom disintegrins: classification and therapeutic potential].
    Kallech-Ziri O; Luis J; El Ayeb M; Marrakchi N
    Arch Inst Pasteur Tunis; 2007; 84(1-4):29-37. PubMed ID: 19388581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-angiogenesis and RGD-containing snake venom disintegrins.
    Swenson S; Ramu S; Markland FS
    Curr Pharm Des; 2007; 13(28):2860-71. PubMed ID: 17979731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase.
    Hiu JJ; Yap MKK
    Biochem Soc Trans; 2020 Apr; 48(2):719-731. PubMed ID: 32267491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the proteomic characterization of the coral snake Micrurus pyrrhocryptus venom.
    Olamendi-Portugal T; Batista CVF; Pedraza-Escalona M; Restano-Cassulini R; Zamudio FZ; Benard-Valle M; de Roodt AR; Possani LD
    Toxicon; 2018 Oct; 153():23-31. PubMed ID: 30153434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preclinical studies of a novel snake venom-derived recombinant disintegrin with antitumor activity: A review.
    Schönthal AH; Swenson SD; Chen TC; Markland FS
    Biochem Pharmacol; 2020 Nov; 181():114149. PubMed ID: 32663453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snake venoms and the hemostatic system.
    Markland FS
    Toxicon; 1998 Dec; 36(12):1749-800. PubMed ID: 9839663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.