BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 25714842)

  • 41. Interaction of Sb(III) with iron sulfide under anoxic conditions: Similarities and differences compared to As(III) interactions.
    Han YS; Seong HJ; Chon CM; Park JH; Nam IH; Yoo K; Ahn JS
    Chemosphere; 2018 Mar; 195():762-770. PubMed ID: 29289022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pyrite-enhanced degradation of chloramphenicol by low concentrations of H2O2.
    Wu D; Liu Y; Zhang Z; Ma L; Zhang Y
    Water Sci Technol; 2015; 72(2):180-6. PubMed ID: 26177399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite.
    Yan L; Chan T; Jing C
    Environ Pollut; 2020 Jul; 262():114309. PubMed ID: 32155558
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.
    Leuz AK; Mönch H; Johnson CA
    Environ Sci Technol; 2006 Dec; 40(23):7277-82. PubMed ID: 17180978
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms for hydroxyl radical production and arsenic removal in sulfur-vacancy greigite (Fe
    Liu W; Liu J; Zhou P; Dahlgren RA; Wang X
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):688-695. PubMed ID: 34416458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions.
    Zhang P; Yao W; Yuan S
    Water Res; 2017 Feb; 109():245-252. PubMed ID: 27912099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In-situ generation of reactive oxygen species using combination of electrochemical oxidation and metal sulfide.
    Kim JG; Kim HB; Shin DH; Alessi DS; Kwon E; Baek K
    Sci Total Environ; 2021 Oct; 789():147961. PubMed ID: 34052499
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of natural cellulose on hydroxyl radical generation by abiotic oxidation of pyrite under acidic conditions.
    Yang Q; Su Y; Yan B; Lun L; Li D; Zheng L
    Sci Total Environ; 2024 Jan; 907():168143. PubMed ID: 37898214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ROS formation driven by pyrite-mediated arsenopyrite oxidation and its potential role on arsenic transformation.
    Zhou S; Gan M; Wang X; Zhang Y; Fang Y; Gu G; Wang Y; Qiu G
    J Hazard Mater; 2023 Feb; 443(Pt A):130151. PubMed ID: 36270187
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidation of benzoic acid from biomass burning in atmospheric waters.
    Santos PSM; Cardoso HB; Rocha-Santos TAP; Duarte AC
    Environ Pollut; 2019 Jan; 244():693-704. PubMed ID: 30384075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redox Behavior of Secondary Solid Iron Species and the Corresponding Effects on Hydroxyl Radical Generation during the Pyrite Oxidation Process.
    Zhao Z; Peng S; Ma C; Yu C; Wu D
    Environ Sci Technol; 2022 Sep; 56(17):12635-12644. PubMed ID: 35976700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water.
    Katsoyiannis IA; Ruettimann T; Hug SJ
    Environ Sci Technol; 2008 Oct; 42(19):7424-30. PubMed ID: 18939581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds.
    Deguillaume L; Leriche M; Chaumerliac N
    Chemosphere; 2005 Jul; 60(5):718-24. PubMed ID: 15963810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidation of acetovanillone by photochemical processes and hydroxyl radicals.
    Benitez FJ; Real FJ; Acero JL; Leal AI; Cotilla S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(12):2153-69. PubMed ID: 16319015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperature dependence of hydroxyl radical formation in the hv/Fe3+/H2O2 and Fe3+/H2O2 systems.
    Lee C; Yoon J
    Chemosphere; 2004 Sep; 56(10):923-34. PubMed ID: 15268958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/H
    Ye Y; Shan C; Zhang X; Liu H; Wang D; Lv L; Pan B
    Environ Sci Technol; 2018 Sep; 52(18):10657-10664. PubMed ID: 30130960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands.
    Wang Y; Kong L; He M; Lin C; Ouyang W; Liu X; Peng X
    Water Res; 2023 Aug; 242():120296. PubMed ID: 37413752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid.
    Southworth BA; Voelker BM
    Environ Sci Technol; 2003 Mar; 37(6):1130-6. PubMed ID: 12680665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydroxyl radical induced oxidation of theophylline in water: a kinetic and mechanistic study.
    Sunil Paul MM; Aravind UK; Pramod G; Saha A; Aravindakumar CT
    Org Biomol Chem; 2014 Aug; 12(30):5611-20. PubMed ID: 24957195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite.
    Kwan WP; Voelker BM
    Environ Sci Technol; 2002 Apr; 36(7):1467-76. PubMed ID: 11999052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.