These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25715117)
1. Photothermal synthesis of ultrafine Cu(x)O nanoparticles on carbon nanotubes for photosensitized degradation. Liu LB; Qin S; Wang JJ; Zheng WJ; Du XW Chem Commun (Camb); 2015 Apr; 51(26):5660-3. PubMed ID: 25715117 [TBL] [Abstract][Full Text] [Related]
2. Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles. Zhang R; Ning Z; Zhang Y; Xie H; Zhang Q; Qian W; Chen Q; Wei F Nanoscale; 2013 Jul; 5(14):6584-8. PubMed ID: 23759997 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light. Shi H; Chen J; Li G; Nie X; Zhao H; Wong PK; An T ACS Appl Mater Interfaces; 2013 Aug; 5(15):6959-67. PubMed ID: 23875915 [TBL] [Abstract][Full Text] [Related]
4. PEGylated Carbon Nanotubes Decorated with Silver Nanoparticles: Fabrication, Cell Cytotoxicity and Application in Photo Thermal Therapy. Behnam MA; Emami F; Sobhani Z Iran J Pharm Res; 2021; 20(1):91-104. PubMed ID: 34400944 [TBL] [Abstract][Full Text] [Related]
5. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Yu J; Ma T; Liu S Phys Chem Chem Phys; 2011 Feb; 13(8):3491-501. PubMed ID: 21173966 [TBL] [Abstract][Full Text] [Related]
6. A strategy for the high dispersion of PtRu nanoparticles onto carbon nanotubes and their electrocatalytic oxidation of methanol. Kuang Y; Cui Y; Zhang Y; Yu Y; Zhang X; Chen J Chemistry; 2012 Jan; 18(5):1522-7. PubMed ID: 22250055 [TBL] [Abstract][Full Text] [Related]
7. RuO(2) nanoparticles dispersed on carbon nanotubes with high electrochemical activity using N incorporation. Fang WC Nanotechnology; 2008 Apr; 19(16):165705. PubMed ID: 21825657 [TBL] [Abstract][Full Text] [Related]
8. Decorating carbon nanotubes with nanoparticles using a facile redox displacement reaction and an evaluation of synergistic hydrogen storage performance. Chang JK; Chen CY; Tsai WT Nanotechnology; 2009 Dec; 20(49):495603. PubMed ID: 19893152 [TBL] [Abstract][Full Text] [Related]
9. Effects of cementation factors on the Cu nanoparticle deposit of Cu-multi-wall carbon nanotubes composites. Cho GS; Kim JW; Choe KH; Kim SS J Nanosci Nanotechnol; 2014 Oct; 14(10):7874-8. PubMed ID: 25942884 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of hybrid carbon nanotubes using Brassica juncea L. application to photodegradation of bisphenol A. Qu J; Luo C; Yuan X Environ Sci Pollut Res Int; 2013 Jun; 20(6):3688-95. PubMed ID: 23135755 [TBL] [Abstract][Full Text] [Related]
11. Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy. Tang DM; Liu C; Yu WJ; Zhang LL; Hou PX; Li JC; Li F; Bando Y; Golberg D; Cheng HM ACS Nano; 2014 Jan; 8(1):292-301. PubMed ID: 24354297 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution. Moon YK; Lee J; Lee JK; Kim TK; Kim SH Langmuir; 2009 Feb; 25(3):1739-43. PubMed ID: 19132930 [TBL] [Abstract][Full Text] [Related]
13. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
14. The effects of confinement inside carbon nanotubes on catalysis. Pan X; Bao X Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038 [TBL] [Abstract][Full Text] [Related]
15. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency. Li J; Han J; Xu T; Guo C; Bu X; Zhang H; Wang L; Sun H; Yang B Langmuir; 2013 Jun; 29(23):7102-10. PubMed ID: 23692027 [TBL] [Abstract][Full Text] [Related]
16. In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials. Hu X; Wang T; Qu X; Dong S J Phys Chem B; 2006 Jan; 110(2):853-7. PubMed ID: 16471615 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles. Baliyan A; Nakajima Y; Fukuda T; Uchida T; Hanajiri T; Maekawa T J Am Chem Soc; 2014 Jan; 136(3):1047-53. PubMed ID: 24369068 [TBL] [Abstract][Full Text] [Related]
18. A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite. Yuan CX; Fan YR; Tao-Zhang ; Guo HX; Zhang JX; Wang YL; Shan DL; Lu XQ Biosens Bioelectron; 2014 Aug; 58():85-91. PubMed ID: 24632133 [TBL] [Abstract][Full Text] [Related]
19. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method. Feng JM; Dai YJ Nanoscale; 2013 May; 5(10):4422-6. PubMed ID: 23579565 [TBL] [Abstract][Full Text] [Related]
20. A facile synthesis of Zn(x)Cd(1-x)S/CNTs nanocomposite photocatalyst for H2 production. Wang L; Yao Z; Jia F; Chen B; Jiang Z Dalton Trans; 2013 Jul; 42(27):9976-81. PubMed ID: 23703674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]